Ancient Monuments Laboratory Report No. 4779 Examination of Technological Material from Abbots Worthy, Hampshire Paul Wilthew February 1986 The material examined (AM 852759) comprised over 50 samples from the Anglo-Saxon site at Abbots Worthy which were regarded as being of possible technological significance. The individual samples were very small and the total weight of material was only about 1.5kg. Identifications of each sample are given in the appendix below. A large majority of the samples were fuel ash slag, which is the result of a reaction at high temperature between ash and silica-rich material such as sand or clay. It is often associated with high temperature technological processes such as metalworking, but it can be formed in any sufficiently hot fire, and there was no evidence that the fuel ash slag from this site was connected with any technological activity. A few pieces of coal, most of which had been burnt resulting in coke, were present but there was no evidence to link them, or the burnt clay or the ferruginous concretion, with any technological activity. The only samples which could be connected with metalworking were the dribbles of lead-tin alloy, which may have been waste from casting pewter, and the iron siag. The former does not, in itself, prove that pewter was being worked on or near the site since it could also have been a melted (perhaps accidentally) pewter object or simply dribbles of solder. The iron slag was almost certainly all iron smithing slag which is the slag that collects in a blacksmith's hearth although one sample could not be positively identified. The presence of such a small quantity of iron smithing slag, although it was probably produced in the vicinity of the site, does not enable any conclusions about the nature of ironworking on or near the site to be drawn. | Sample No. | Identification | |--|---| | 7344
7485 521
7497 582
7498
7497 442
7526 445
7628 1052
7557 960
7412 936
7724 1174
7420 943
7448 956
7488 955
7391 903
7519 1110
7519 1111
7520 1121
7486 1109 | Iron smithing slag Iron (?smithing) slag Fuel ash | | 7486 1109
7543 1168
7542 1160
7349 829
7398 915
7375 930
7378 890
7408 904
7414 937
7448 954
7448 929
7469 953
7484 1166
7484 1167
7486 1108 | Fuel ash slag Dribbles of lead-tin alloy All three samples were coal Fuel ash slag | | 7598 1187
7391 902
7390 908
7515 1159
7515 1158
7718 1176
7700 1102
7712 1173
7700 1103
7624 1107
7643 1172
7681 1101 | Fuel ash slag | | 7722 1175 | Fuel ash slag | |----------------------------------|--| | 7810 1178 | Ferruginous concretion | | 7828 1163 | Fuel ash slag | | 7833 1191 | Fuel ash slag | | 7507 1185 | Fired clay | | 7507 1186 | Fuel ash slag | | 7512 998
7442 948
7422 940 | Fuel ash slag Coal, possibly also includes fuel ash slag Fuel ash slag | | 7420 943 | Coal | | 7370 925 | Coal or fuel ash slag | | 7340-408 | Iron smithing slag | | 7345-893 | Fuel ash slag | | 7341-902 | Fuel ash slag |