

Ancient Monuments Laboratory Report 127/90

ANALYSIS OF ROMAN GLASSWORKING MATERIAL FROM LONDON

Michael Heyworth

AML reports are interim reports which make available the results publication of specialist investigations in advance of full They are not subject to external refereeing and their conclusions the light of to be modified in sometimes have may archaeological information that was not available the time at asked consult of the investigation. Readers are therefore to the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in AML reports are those of the author and are not necessarily those of the Historic Buildings and Monuments Commission for England. Ancient Monuments Laboratory Report 127/90

ANALYSIS OF ROMAN GLASSWORKING MATERIAL FROM LONDON

Michael Heyworth

Summary

A selection of predominantly Roman glass-working waste and glass fragments was analysed by inductively coupled plasma spectrometry. Some analyses were undertaken of glass fragments adhering to remains of a ceramic tank furnace in which they had been melted. The analyses exchange showed evidence for an of chemical constituents between the clay and the glass. The glass was all of standard soda-lime silica composition. However, there were significant differences in the levels of decolourisers, such as manganese and antimony, which relate to iron contents and suggest some preselection of the raw materials.

Author's address :-

Michael Heyworth

Council for British Archaeology 112 Kennington Road London

SE11 6RE

 \bigcirc

Historic Buildings and Monuments Commission for England

ANALYSIS OF ROMAN GLASSWORKING MATERIAL FROM LONDON

<u>Introduction</u>

Excavations undertaken by archaeologists from the Museum of London in the area of the Upper Walbrook Valley have revealed a number of sites with evidence for glass-working and In particular the sites of Copthall Avenue glass-blowing. and Moorgate have revealed evidence for an industrial quarter dating to the late first and second centuries AD on what would have been fringes of the contemporary Roman city. the northern This activity pre-dated the construction of the city wall (to the immediate north) but was contemporary with the fort area's and amphitheatre to the immediate west.

The material from these sites displays the most complete glassworking assemblage so far recovered from the Roman city. Included are numerous tank furnace fragments, moils (the waste glass left on a blow-pipe or pontil after the removal of the vessel or object), pot or tank metal fragments (metal is used in this context as the technical term for bulk molten glass), droplets and amorphous blobs of glass and small fragments from possible waster vessels. In collaboration with John Shepherd of the Museum of London a set of objectives was established for an analytical programme to investigate the composition of the different groups of material. The main objectives were related to investigating the composition of the glass associated with the furnace and of the tank metal fragments, and comparing this glass with moils and other waste fragments, and also with vessel fragments.

The Glass

The glass samples included in the analytical programme came from a number of Roman sites in London, particularly the Moorgate site, and also sites in Copthall Avenue, Watling House, and Norton Folgate. A sample from medieval glassworking remains at the Tower of London was also analysed for comparison. The material from the different sites vary in date as follows:

<u>Site</u> <u>name</u>	<u>Site</u> Code	<u>No. Of</u> Samples	Date Range
Moorgate	(MGT)	26	100 - 150 AD
Watling House	(WAT)	6	50 - early Flavian
Copthall Avenue	(OPT)	4	100 - 150 AD
Norton Folgate	(NRT)	4	180 - 300 AD
Tower of London	(TOL)	1	medieval

Most of the analysed glass samples were lightly tinted blue-green glasses (sometimes called naturally coloured) with a small number

being deliberately coloured. The lightly tinted glasses, which are the most common glass types found on all sites in the first millennium AD, are tinted due to the presence of iron in the glass. This tint is a result of the use of raw materials, such as sand, in the primary glass-making which contain iron as an unrecognised impurity.

adhering to the tank furnace from the Moorgate The glass site showed a considerable variety of blue-green tints. This could be due to minor variations in composition, though other factors can influence the colour, such as variations in redox conditions, ie the presence or absence of oxygen in the furnace, or variations temperatures throughout the parts of the furnace. in Roman glassmakers were able to produce completely decolourised qlass, it is unlikely they had sufficient control over the but glass production to produce a specific light tint colour on demand. Theophilus, writing in the twelth century, describes how а colourless glass could, with further heating, turn to either saffron yellow becoming redder with time or a tawny, flesh colour which deepens to a reddish purple with prolonged heating (Hawthorne & Smith 1963). However there is no evidence to suggest that Theophilus knew how to control whether the glass turned yellow or tawny in the first place, which would have depended on the levels of the transition metals in the glass batch, particularly iron and manganese, and their state of oxidation.

The glassworking waste from the Moorgate site was predominantly associated with the tank furnace and a number of samples were taken from the surface of the furnace where they were still adhering to the clay matrix.

Analytical Method

analyses were undertaken using inductively coupled plasma The atomic emission spectrometry (ICPS). The ICPS technique is becoming increasingly widely used in the analysis of archaeological materials (Heyworth et al 1988) as it has a number of advantages over other analytical techniques. In particular it gives compositional data for a wide range of elements at the major, minor and trace levels (Thompson and Walsh 1986). This is particularly important for the analysis of glass where major and minor elements determine the general type of glass and minor and trace elements have an important influence on its colour. In the present programme data was obtained for 32 oxides and elements: Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, MnO, Pb, Sb, Ba, Co, Cr, Cu, Li, Nb, Ni, Sc, Sr, V, Y, Zn, Zr, La, Ce, Nd, Sm, Eu, The figure for silica was obtained by Dy, Yb and SiO₂. difference as the silica is removed in the sample preparation Some minor oxides, such as sulphur and tin, which may procedure. be present in the glass, were not included in the analytical programme (which was primarily established for silicate rock analysis). The analysis of tin and sulphur is possible using ICPS, though a different sample preparation procedure would be required for the analysis of sulphur.

Samples of glass for analysis were cut from the glass fragments using a low speed diamond blade saw and milled to a fine powder. A powdered sample of 100 mg was then evaporated to dryness with perchloric and hydrofluoric acid, and the residue dissolved in hydrochloric acid and distilled water before diluting to a standard solution strength. The sample preparation and ICPS analysis was undertaken in the Department of Geology at Royal Holloway and Bedford New College, University of London, under the supervision of Dr J.N.Walsh.

The ICPS analysis was carried out using a Philips polychromator ICPS system calibrated for quantitative analysis with multi-element rock standards. The glass solutions were run the system twice, the first time the majority of major. through minor and trace elements were measured, and the second time the solution was diluted to 10% of its original strength to obtain the soda figures. The dilution was necessary to maintain a linear calibration for the soda signal. Multi-element rock standards were analysed at regular intervals during the analytical run correction of any short-tern to allow for fluctuations in the system. Three glass substandards were also analysed to check the ICPS calibration.

Forty-one analyses were undertaken of glass fragments from the various sites. The full compositional data is listed in Table 1, together with relevant information on the archaeological context in which the glass was found and a description of the glass type and colour.

Analytical Results and Discussion

All the glass is of the durable, soda-lime-silica type which previous work (eg Sanderson <u>et al</u> 1984) has shown to be the standard glass composition in the Roman period in north-west Europe. However there were other features of the analytical data which showed significant differences between the samples.

Whilst all the glass was of similar major oxide composition, there was a wide variation in the range of values for some of the minor oxides (see Table 3), particularly iron oxide which ranged over an order of magnitude from about 0.2% to over 2.0% (see Figure 1). The variation in iron oxide content correlated with similar variation in the levels of aluminium and titanium oxides, likely to be present at significant levels in the elements all of the furnace wall. All the samples with high levels clay of iron oxide were of glass taken from the surface of the tank furnace and it is therefore likely that there has been some movement of these elements from the clay of the furnace into the glass via some form of exchange mechanism. Great care had been taken when removing the samples for analysis to ensure that no of furnace material were left adhering to the glass particles before the sample was put into solution and any possibility of sample contamination can therefore be ruled out.

A cross section was cut through one of the furnace fragments and this shows a number of distinct layers between the clay of the furnace on the outside and the translucent light blue-green glass on the inside (see Figure 2). Further investigation of the movement of elements from the clay to the glass would need to look at the level of particular elements in each layer from the clay through to the glass. This could be achieved using a scanning electron microscope (SEM) in the backscattered mode to

look at the distribution of individual elements through the layers shown in Figure 2. It would also be possible to investigate the mineralogical composition of the layers using X-ray diffraction.

Similar work has been reported on glassmaking crucibles from the Wadi el-Natrun in Egypt which were also dated to the Roman period (Saleh et al 1972). Three layers were distinguished through a vertical section of a fritting crucible which were labelled A, B These layers were distinguished on the basis of and с. their colour and appearance, though they lacked sharply defined Layer A is the outside, ie that subjected to firing, boundaries. layer C represents the inner surface of the crucible wall which was in direct contact with the glass layer, and layer B is the middle part of the wall. Analysis of the three layers showed that whilst layers A and B were of similar composition, they were quite different to layer C. In particular the aluminium, iron and titanium oxide levels were reduced in layer C, and the silicon, calcium and sodium oxide levels were increased, in comparison to the composition of layers A and B. This is likely be a result of the reaction between the crucible material and to the glass material. Comparison of the Egyptian data with that obtained from the analysis of different samples of the Moorgate tank furnace showed that a similar pattern could be identified in the latter group (see Table 2).

clearly has important implications for any attempts to link This material from furnaces or crucibles to any waste or finished glass production Excavations products from sites. of archaeological sites do occasionally uncover evidence for glassworking in the form of crucible fragments containing melted As there is only a thin layer of glass usually left glass. adhering to the crucible (often only 1-2 mm) it will clearly be important to investigate the variations in composition through the glass before any assertions can be made as to the exact composition of any glass vessels or objects produced using glass melted in the crucible. It may be that trace elements will be more important in establishing links between glass from crucibles and glass from vessels or objects and the use of multi-element techniques such as ICPS, NAA or electron microprobe will be important to obtain the full glass composition, down to trace element level, for this purpose.

The iron levels in the glass, even allowing for the contamination problem, suggest that the sand source being used was not a particularly pure one. It is therefore likely that the glassmakers would have attempted to decolourise the glass. The principal decolourants used in the Roman period were manganese and antimony (Sayre 1963) and the analytical data from London suggests that both were in use there, though it is not clear whether both were deliberately, and separately, added to the glass batch or whether the use of cullet containing either manganese or antimony can be suggested. It is often difficult to judge the level at which something becomes a deliberate addition the glass. The glass from the London sites frequently had to а manganese oxide level of about 0.25% however there were one group fragments analysed which had a higher manganese level than of most and these fragments also tended to have lower iron oxide contents (see Figure 3). This suggests that the glassmakers readily understood the properties of manganese as a decolourant

and also preselected the raw materials containing less iron oxide in an attempt to produce a more colourless glass. The levels of manganese added would not have been sufficient to have had a significant decolourising effect on glass with a high iron content.

Antimony is a more effective decolourant than manganese and tends to produce a more brilliant colourless glass. It was therefore of particular interest to find that the glasses containing higher of iron usually contained a significant level of antimony levels Figure 3), but only an average amount of manganese, though (see some cases the measured iron oxide level is affected by in the diffusion from the furnace wall. The use of antimony in these glasses suggests that the glassmakers knew that a more effective decolourant was needed to cope with the less pure raw materials used in glass production. These results suggest a high level of skill and knowledge on the part of the Roman technical glassworkers.

From the glass fragments found associated with the tank furnace at Moorgate, and vessel fragments of similar date found in other contexts on the site, it is likely that the production of glass tableware was carried out in the area in the second century A.D. The glasses are not completely decolourised so, if antimony and manganese oxides were deliberately added, it appears that their use as decolourisers in the glass was not intended to produce a pure colourless glass but may have been an attempt to vary the of the glass to a paler shade. It is, however, possible tint that the differences result from the use of cullet in the vessel production. Further work is now needed to see if it is possible link specific decolourants or glass "recipes" to the to production of specific glass vessel types which may indicate a more sophisticated technological knowledge. The main problem in any study of this nature is the fragmentary nature of the vessels recovered which often makes it difficult to identify specific typological form variations.

The analyses of the waste glass fragments has shown that there is considerable variation in their composition and it is not possible with this small number of samples to suggest any meaningful groupings within the data. It is particularly interesting to note that there is very little difference in composition between the medieval glass waste from the Tower of London and the earlier Roman waste glass. A larger group of samples that can be securely dated and identified will be needed before any compositional patterns can be expected to emerge.

This work shows the value of an analytical component to the study of ancient glass production, particularly when the compositional studies be undertaken in close collaboration with can archaeologists and specialists in glass typology, in order to gain a better understanding of glass production in the past. It is only by this combination of evidence that it will be possible, way, to reconstruct the in an archaeologically meaningful technology of ancient glass production.

Acknowledgements

particularly like to thank Dr J.N.Walsh of the Dept Ι would of Royal Holloway & Bedford New College, for undertaking Geology, I would also like to thank John Shepherd of the ICPS analyses. the Department of Urban Archaeology, Museum of London, for providing the archaeological information connected with the Justine Bayley and Dr Julian Henderson provided helpful glass. The photograph for Figure 2 was taken by Louise comments. Woodman of the English Heritage Photography Section.

References

Hawthorne, J.G. & Smith, C.S. (1963). <u>On Divers Arts, the</u> <u>Treatise of Theophilus</u>. University of Chicago Press, Chicago.

- Heyworth, M.P., Hunter, J.R., Warren, S.E. & Walsh, J.N. (1988). The analysis of archaeological materials using inductively coupled plasma spectrometry. In: <u>Science and Archaeology</u>, <u>Glasgow 1987</u>, eds. E.A. Slater & J.O. Tate, pp. 27-40. British Archaeological Reports British Series 196, Oxford.
- Saleh, S.A., George, A.W. & Helmi, F.M. (1972). Study of glass and glass-making processes at Wadi el-Natrun, Egypt in the Roman period 30 B.C. to 359 A.D. Part I Fritting crucibles, their technical features and temperature employed in <u>Studies in</u> <u>Conservation</u>, 17, 143-72.
- Sanderson, D.C.W., Hunter, J.R. & Warren, S.E. (1983). Energy dispersive X-ray fluorescence analysis of 1st millennium glass from Britain in <u>Journal of Archaeological Science</u>, 11, 53-69.
- Sayre, E.V. (1963). The intentional use of antimony and manganese in ancient glasses. In: <u>VI International Congress on</u> <u>Glass: Advances in Glass Technology</u>, Part 2, eds. F.R. Matson & G.E.Rindone, pp. 263-82. Plenum Press, New York.
- Thompson, M. & Walsh, J.N. (1983). <u>A handbook of inductively</u> <u>coupled plasma spectrometry</u>, 1st edn. Blackie & Son Ltd., Glasgow.

Table 1

ICPS data

Forty-one glass samples were analysed using inductively coupled plasma atomic emission spectrometry (ICPS) and data was obtained for 31 oxides/elements. The data from each analysis is divided into the major and minor oxides (listed as oxide weight percentages), minor elements (listed as weight percentages) and trace elements (listed as parts per million). The figure for silica is obtained by subtracting the total figure of the measured oxides/elements from 100%. Consequently the sum of the concentrations, including silica, is always exactly 100%.

The data is listed together with information on the site code, accession number, context number, colour and glass type. The site names and glass colours are coded as follows:

Site code

Colour code

MGT	_	Moorgate	LB	-	Light Blue
NRT	-	Norton Folgate	\mathbf{LG}		Light Green
OPT	-	Copthall Avenue	LB/G		Light Blue/Green
TOL		Tower Of London	В	-	Blue
TIM	-	The Times	G/Y	-	Green/Yellow
WAT	-	Watling House	Br/Y	-	Brown/Yellow
			С	-	Colourless

Site		MGT	MGT	MGT	OPT	WAT	WAT
Acc. 1	10.	366	708	451	1024	12	11
Contex	(t	515	796	1100	524	-	
Al ₂ 0 ₃	(%)	2.49	2.46	2.49	2.46	1.82	2.53
Fe203	(%)	0.56	0.37	0.31	0.29	0.22	0.63
MgO	(%)	0.56	0.56	0.53	0.49	0.31	0.65
CaO	(%)	6.85	7.84	7.58	7.63	5.61	6.24
Na ₂ 0	(%)	17.3	16.5	17.0	15.3	17.1	17.6
к ₂ 0	(%)	0.84	0.87	0.85	0.58	0.41	0.91
TiO ₂	(%)	0.10	0.08	0.07	0.07	0.06	0.14
P205	(%)	0.13	0.18	0.14	0.14	0.11	0.17
MnO	(%)	0.33	0.55	0.38	0.33	0.02	0.53
Pb	(%)	0.03	0.02	0.01	0.01	0.00	0.05
Sb	(%)	0.25	0.03	0.00	0.00	0.00	0.13
Ba Co Cr Li Nb Ni Sc Sr V Y Zn Zr La Ce Nd Sm Eu Yb	(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	223 10 18 52 13 2 15 1 426 16 9 70 53 14 16 20 2.9 0.5 1.8 0.8	1298 13 17 80 4 1 21 1 441 16 9 65 38 12 16 19 2.7 0.5 1.9 0.8	213 11 18 22 4 2 19 1 430 14 9 53 36 13 17 20 3.3 0.5 2.0 0.9	220 11 15 27 4 2 18 1 426 13 9 31 33 12 16 20 3.3 0.5 1.9 0.9	$ \begin{array}{r} 145 \\ 8 \\ 10 \\ 17 \\ 2 \\ 2 \\ 14 \\ 1 \\ 285 \\ 7 \\ 7 \\ 31 \\ 34 \\ 12 \\ 15 \\ 21 \\ 2.8 \\ 0.4 \\ 1.5 \\ 0.7 \\ \end{array} $	$275 \\ 15 \\ 19 \\ 713 \\ 7 \\ 3 \\ 20 \\ 2 \\ 370 \\ 18 \\ 9 \\ 38 \\ 70 \\ 14 \\ 19 \\ 21 \\ 3.3 \\ 0.5 \\ 2.0 \\ 1.0 $
SiO ₂	(%)	70.5	70.3	70.6	72.6	74.3	70.3
Colour	2	LB	LB	LB	LB	G/Y	LB
Туре		Waste	Bottle	Window	Waste	Vessel	Bottle

.

÷

Site		MGT	WAT	OPT	NRT	NRT	MGT
Acc. N	0.	366	6	1023	219	219	709
Contex	t	515	-	524	596	596	854
Al203	(%)	2.50	2.20	2.65	2.25	2.41	2.67
Fe ₂ 03	(%)	0.29	0.75	0.34	0.49	0.50	0.29
MgO	(%)	0.52	0.41	0.56	0.55	0.58	0.53
CaO	(%)	7.64	5.87	8.02	6.38	6.54	7.68
Na ₂ 0	(%)	15.9	16.1	14.1	18.9	18.6	16.5
к ₂ 0	(%)	0.63	0.57	1.01	0.65	0.77	0.61
TiO ₂	(%)	0.07	0.07	0.07	0.09	0.10	0.07
P205	(%)	0.16	0.15	0.17	0.11	0.13	0.13
MnO	(%)	0.64	0.92	0.48	0.26	0.34	0.24
Pb	(%)	0.01	0.01	0.01	0.03	0.04	0.01
Sb	(%)	0.01	0.00	0.00	0.34	0.32	0.00
Ba Co Cr Li Nb Ni Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb	(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	247 12 14 15 4 2 21 1 449 18 9 15 33 12 17 20 3.3 0.5 2.1 0.9	2457911415023264138921833341314212.80.42.30.9	264 10 15 13 6 2 19 1 459 21 9 17 36 12 16 19 3.0 0.5 2.0 0.8	$ 199 \\ 10 \\ 15 \\ 69 \\ 7 \\ 2 \\ 17 \\ 1 \\ 412 \\ 14 \\ 8 \\ 30 \\ 47 \\ 13 \\ 16 \\ 20 \\ 2.6 \\ 0.4 \\ 1.6 \\ 0.8 \\ $	216 8 17 61 12 2 18 1 419 17 9 28 54 13 17 21 2.8 0.5 1.8 0.9	$237 \\ 10 \\ 16 \\ 12 \\ 3 \\ 1 \\ 19 \\ 1 \\ 425 \\ 13 \\ 9 \\ 14 \\ 32 \\ 12 \\ 16 \\ 20 \\ 3.0 \\ 0.5 \\ 1.7 \\ 0.9 $
sio ₂	(%)	71.5	72.6	72.5	69.9	69.6	71.2
Colour		LG	в	LB	LB	LB	LB
Туре		Waste	Vessel	Waste	Waste	Waste	Waste

-

r

Site		NRT	NRT	MGT	MGT	TOL	MGT
Acc. N	0.	219	219	717	718	18	710
Contex	t	596	596	1080	1222	-	796
Al203	(%)	2.33	2.27	2.56	2.48	2.35	1.92
Fe ₂ 03	(%)	0.49	0.47	0.32	0.44	0.49	0.28
MgO	(%)	0.54	0.54	0.58	0.56	0.55	0.40
CaO	(%)	6.60	6.33	7.57	6.91	6.43	5.78
Na ₂ 0	(%)	18.5	18.9	16.5	18.3	18.8	19.8
к ₂ 0	(%)	0.68	0.80	0.51	0.76	0.72	0.53
TiO2	(%)	0.09	0.10	0.07	0.09	0.10	0.05
P205	(%)	0.12	0.11	0.12	0.16	0.12	0.05
MnO	(%)	0.29	0.21	0.17	0.50	0.24	0.01
Pb	(%)	0.02	0.02	0.01	0.05	0.02	0.13
Sb	(%)	0.30	0.35	0.00	0.15	0.32	0.39
Ba Co Cr Li Nb Ni Sc Sr V Y Zn Zr La Ce Nd Sm Ly Yb	(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	208 10 16 41 9 2 17 1 405 15 8 25 47 13 16 20 2.8 0.5 1.7 0.9	193 9 16 53 13 2 20 1 382 14 8 45 51 13 17 20 3.0 0.5 1.7 0.9	$221 \\ 10 \\ 21 \\ 14 \\ 4 \\ 1 \\ 16 \\ 1 \\ 405 \\ 13 \\ 9 \\ 14 \\ 35 \\ 13 \\ 16 \\ 20 \\ 3.1 \\ 0.5 \\ 1.7 \\ 0.9 $	$\begin{array}{c} 230 \\ 16 \\ 17 \\ 145 \\ 6 \\ 2 \\ 20 \\ 1 \\ 415 \\ 16 \\ 9 \\ 24 \\ 45 \\ 13 \\ 17 \\ 20 \\ 3.0 \\ 0.5 \\ 2.0 \\ 0.9 \end{array}$	$205 \\ 11 \\ 18 \\ 41 \\ 10 \\ 17 \\ 1 \\ 392 \\ 14 \\ 8 \\ 28 \\ 52 \\ 13 \\ 16 \\ 20 \\ 2.8 \\ 0.5 \\ 1.8 \\ 0.9 \\ $	$ \begin{array}{r} 135 \\ 6 \\ 13 \\ 9 \\ 2 \\ 1 \\ 11 \\ 11 \\ 413 \\ 6 \\ 7 \\ 13 \\ 22 \\ 13 \\ 15 \\ 21 \\ 2.6 \\ 0.4 \\ 1.3 \\ 0.7 \\ \end{array} $
sio ₂	(%)	70.0	69.8	71.5	69.5	69.8	70.6
Colour	•	LB	\mathbf{LB}	LB/G	LΒ	LB	С
Туре		Waste	Waste	Waste	Bottle	Waste	Beaker

Site		MGT	WAT	MGT	MGT	WAT	MGT
Acc. N	10.	292	4	712	716	20	292
Contex	(t	300	-	796	1222	-	300
Al203	(%)	2.30	5.74	2.76	2.48	2.39	2.40
Fe ₂ 03	(%)	0.44	0.30	0.30	0.26	0.32	0.47
MgO	(%)	0.55	0.36	0.52	0.45	0.47	0.56
CaO	(%)	6.73	3.53	7.69	7.62	7.23	6.96
Na ₂ 0	(%)	18.9	19.8	17.4	17.6	18.6	19.7
к ₂ 0	(%)	0.69	1.56	0.60	0.56	0.66	0.76
TiO ₂	(%)	0.09	0.10	0.07	0.06	0.08	0.10
P205	(%)	0.11	0.18	0.12	0.14	0.13	0.11
MnO	(%)	0.27	0.03	0.08	0.30	0.48	0.27
Pb	(%)	0.10	0.01	0.01	0.01	0.01	0.19
Sb	(%)	0.32	0.00	0.00	0.00	0.04	0.30
Ba Co Cr Li Nb Ni Sc Sr V Y Zn Zr Lae Nd Sm Dy Yb	(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	205 10 16 53 9 2 17 1 417 14 8 27 48 13 17 20 3.0 0.5 1.6 0.9	320 6 46 10 5 3 15 181 8 9 15 66 13 16 23 2.6 0.4 1.7 1.0	$217 \\ 9 \\ 17 \\ 9 \\ 4 \\ 2 \\ 20 \\ 1 \\ 410 \\ 10 \\ 9 \\ 13 \\ 33 \\ 12 \\ 16 \\ 20 \\ 3.2 \\ 0.5 \\ 1.7 \\ 0.9 $	230 11 14 11 3 1 398 11 9 14 31 13 16 19 3.0 0.5 1.7 0.9	225 13 15 80 7 2 18 1 414 14 9 18 38 13 17 20 3.1 0.5 2.0 0.9	$211 \\ 10 \\ 17 \\ 56 \\ 13 \\ 2 \\ 19 \\ 1 \\ 417 \\ 15 \\ 9 \\ 28 \\ 52 \\ 13 \\ 17 \\ 20 \\ 3.0 \\ 0.5 \\ 1.7 \\ 0.9 $
SiO ₂	(%)	69.4	68.3	70.4	70.4	69.5	68.1
Colour	.	LB/G	Br/Y	LG	LB	LB	LB
Туре		Waste	Vessel	Bowl	Vessel	Waste	Waste

.

r

h

Site		MGT	OPT	MGT	MGT	MGT	MGT
Acc.	No.	415	1478	437	444	445	448
Conte	xt	298	306	949	847	819	495
Al203	(%)	2.34	2.51	3.85	4.59	3.62	3.21
Fe ₂ 0 ₃	(%)	0.45	0.38	1.06	1.22	1.47	0.92
MgO	(%)	0.56	0.53	0.71	0.77	1.02	0.60
CaO	(%)	6.97	7.06	5.95	5.90	7.45	6.58
Na ₂ 0	(%)	20.2	18.7	16.2	17.4	17.7	17.9
к ₂ 0	(%)	0.78	0.75	1.27	0.93	1.44	0.95
TiO ₂	(%)	0.09	0.08	0.19	0.23	0.18	0.16
P205	(%)	0.12	0.15	0.13	0.14	0.28	0.13
MnO	(%)	0.27	0.53	0.19	0.22	0.28	0.32
Pb	(%)	0.11	0.04	0.03	0.11	0.08	0.02
Sb	(%)	0.30	0.09	0.35	0.25	0.19	0.18
Ba Co Cr Li Nb Ni Sc Sr V Y Zn Zr La Ce Nd Sm Eu Dy Yb	(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	209 10 16 57 13 3 16 1 418 15 9 30 50 13 17 20 3.1 0.5 1.8 0.9	$232 \\ 14 \\ 16 \\ 95 \\ 2 \\ 20 \\ 1 \\ 418 \\ 16 \\ 9 \\ 22 \\ 39 \\ 13 \\ 16 \\ 19 \\ 2.8 \\ 0.5 \\ 1.9 \\ 0.$	$218 \\ 9 \\ 27 \\ 64 \\ 75 \\ 4 \\ 23 \\ 3 \\ 367 \\ 30 \\ 11 \\ 34 \\ 63 \\ 18 \\ 25 \\ 23 \\ 3.9 \\ 0.6 \\ 2.1 \\ 1.0 $	218 11 33 67 15 5 22 4 350 39 13 38 76 19 27 23 4.3 0.7 2.4 1.3	$247 \\ 14 \\ 29 \\ 80 \\ 51 \\ 2 \\ 29 \\ 3 \\ 392 \\ 31 \\ 12 \\ 127 \\ 67 \\ 17 \\ 25 \\ 21 \\ 4.2 \\ 0.6 \\ 2.4 \\ 1.1 $	221 12 23 55 18 4 23 2 380 23 12 31 86 15 23 22 3.8 0.6 2.2 1.2
sio ₂	(%)	67.7	69.1	70.0	68.1	66.2	68.9
Colou	r	LB	LB/G	LB	LB	LB	LB
Туре		Waste	Waste	Furnace bottom	Furnace top	Furnace top	Furnace top

c

Site		MGT	MGT	MGT	MGT	OPT	MGT
Acc.	No.	446	437	447	445	1440	448
Conte	ext	+	949	819	819	94	495
Al203	(%)	5.03	6.66	3.34	3.57	3.54	2.96
Fe ₂ 03	(%)	1.67	2.07	0.88	0.86	1.09	0.84
MgO	(%)	1.03	1.05	0.71	0.67	0.71	0.61
CaO	(%)	6.92	4.91	6.59	6.45	6.76	6.81
Na ₂ 0	(%)	15.4	14.6	18.8	17.0	15.7	17.6
к ₂ 0	(%)	1.62	1.00	1.08	0.91	1.44	1.16
TiO ₂	(%)	0.25	0.35	0.16	0.16	0.20	0.14
P205	(%)	0.24	0.16	0.13	0.15	0.16	0.14
MnO	(%)	0.25	0.16	0.22	0.25	0.25	0.32
Pb	(%)	0.13	0.17	0.06	0.32	0.03	0.02
Sb	(%)	0.16	0.24	0.35	0.25	0.26	0.18
Ba CCr Cui Nbi SC V Y Z Z L C M M S U Y D Y D Y D	(ppm) (ppm)	$271 \\ 13 \\ 38 \\ 57 \\ 36 \\ 33 \\ 5 \\ 378 \\ 43 \\ 14 \\ 74 \\ 90 \\ 19 \\ 30 \\ 23 \\ 4.2 \\ 0.7 \\ 2.5 \\ 1.4 \\ $	$223 \\ 15 \\ 50 \\ 60 \\ 15 \\ 6 \\ 31 \\ 60 \\ 16 \\ 50 \\ 86 \\ 25 \\ 38 \\ 38 \\ 5.4 \\ 0.9 \\ 3.1 \\ 1.5 \\ $	$215 \\ 10 \\ 23 \\ 84 \\ 24 \\ 4 \\ 20 \\ 399 \\ 27 \\ 11 \\ 37 \\ 70 \\ 16 \\ 21 \\ 22 \\ 3.6 \\ 0.6 \\ 2.2 \\ 1.1 \\ 1$	$220 \\ 9 \\ 23 \\ 53 \\ 15 \\ 3 \\ 18 \\ 384 \\ 25 \\ 10 \\ 33 \\ 57 \\ 15 \\ 20 \\ 21 \\ 3.4 \\ 0.5 \\ 2.0 \\ 1.0 $	251 11 29 49 43 4 24 358 27 13 48 108 17 25 22 3.8 0.6 2.4 1.3	$240 \\ 10 \\ 22 \\ 60 \\ 31 \\ 4 \\ 24 \\ 2 \\ 398 \\ 21 \\ 11 \\ 31 \\ 75 \\ 15 \\ 21 \\ 21 \\ 3.7 \\ 0.6 \\ 2.2 \\ 1.1 \\ 1.$
SiO ₂	(%)	67.2	68.5	67.6	69.3	69.8	69.1
Colou	ır	LB/G	LG	LB	LG	LB	\mathbf{LB}
Туре		Furnace top	Furnace top	Furnace top	Furnace bottom	Tile frag	Furnace top

Site		WAT	MGT	MGT	MGT	MGT	
Acc.	No.	13	307	366	715	366	
Conte	ext		343	515	1192	515	
Al203	(%)	2.60	2.62	2.46	2.69	2.33	
Fe ₂ 03	(%)	0.27	0.71	0.51	0.38	0.44	
MgO	(%)	0.45	0.63	0.58	0.60	0.55	
CaO	(%)	7.33	6.58	6.82	7.76	6.65	
Na_2O	(%)	16.4	16.8	17.7	15.1	17.2	
К ₂ О	(%)	0.65	1.24	0.85	0.71	0.70	
TiO ₂	(%)	0.07	0.12	0.10	0.08	0.09	
P205	(%)	0.14	0.12	0.12	0.17	0.12	
MnO	(%)	0.17	0.23	0.27	0.65	0.27	
Pb	(%)	0.01	0.04	0.06	0.01	0.10	
Sb	(%)	0.00	0.34	0.31	0.02	0.32	
Ba Co Cr Cu Li Nb Ni Sc Sr V Y Zn Zr Zr La Ce Nd Sm Eu Dy Yb	(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)	213 10 13 9 4 2 18 1 396 10 9 15 34 13 16 19 3.0 0.5 1.7 0.9	207 10 20 58 62 394 19 10 38 66 14 20 22 3.7 0.5 1.9 1.0	211 11 18 57 18 2 18 2 415 16 9 30 54 14 18 20 3.0 0.5 1.8 1.0	265 16 18 39 3 1 22 1 471 19 9 20 37 12 15 18 2.5 0.5 2.0 0.8	205 10 18 55 11 2 19 1 416 14 8 28 48 13 17 21 3.0 0.5 1.7 0.9	
5102	(*)	71.8	70.5	70.1	71.7	71.1	
Colou	r	LG	LB	LB	LB	LB	
Туре		Vessel	Waste	Waste	Vessel	Waste	

•

Table 2

Compositional evidence for chemical exchange of elements between the glass and the clay in glass-melting crucibles

a) Data from Egyptian crucible (from Saleh et al 1972)

	Crucible rim Layer A	Crucible rim Layer B	Crucible rim Layer C
SiO2	57.8 %	57.3 %	62.1 %
Na2Õ	6.2 %	5.9 %	11.0 %
CaÕ	6.9 %	6.8 %	7.4 %
Al203	14.7 %	15.3 %	9.5 %
Fe203	6.7 %	6.9 %	4.4 %
TiO ₂	1.4 %	1.4 %	0.8 %

Layer C, the layer in contact with the glass, shows reduced levels of aluminium, iron and titanium oxides suggesting they have migrated from the clay into the glass, and increased levels of silica, sodium and calcium oxides suggesting they have migrated from the glass into the clay.

b) Data from Roman tank furnace found at Moorgate, London

	Glass fragment adhering to furnace wall	Glass fragment likely to come from the furnace
SiO2	68.5 %	71.1 %
Na ₂ Õ	14.6 %	17.2 %
CaŌ	4.9 %	6.7 %
Al ₂ 03	6.7 %	2.3 %
Fe203	2.1 %	0.4 %
TiO ₂	0.4 %	0.1 %

The glass adhering to the furnace wall shows increased levels of aluminium, iron and titanium oxide suggesting these have migrated from the clay into the glass, and reduced levels of silica, sodium and calcium oxide suggesting these have migrated into the clay from the glass.

NB. However it is possible in the case of some oxides, particularly silica, that the apparent differences are due to the nature of percentage data where a real fall in one component leads to an apparent rise in others.

١S

Single element dotplots for all the London glass data

·....

)

Figure 1

ç.

Bar chart showing iron oxide levels in all samples ranked in ascending order

Figure 3

Area chart showing manganese oxide (MnO) and antimony (Sb) levels in all samples analysed, shown in order of increasing iron oxide level (samples are plotted in the same order as in Figure 1)

Figure 2

Photograph showing cross section through a fragment of tank furnace and the glass adhering to the inner surface (from the top of the clay to the bottom of the glass is approximately 1 cm)

