Ancient Monuments Laboratory Report 34/92

METALWORKING DEBRIS FROM THWING, YORKSHIRE

Catherine Mortimer BTech DPhil

AML reports are interim reports which make available the results of specialist investigations in advance of full publication They are not subject to external refereeing and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore asked to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in AML reports are those of the author and are not necessarily those of the Historic Buildings and Monuments Commission for England.

Ancient Monuments Laboratory Report 34/92

METALWORKING DEBRIS FROM THWING, YORKSHIRE

Catherine Mortimer BTech DPhil

Summary

3

4

Ferrous metalworking remains constitute the largest part of the high-temperature industrial evidence at Thwing. The deposits date from the late Anglo-Saxon period (8th to 10th centuries AD) and largely consist of background scatter, attesting to smithing activities. A small amount of lead working evidence is also described.

Author's address :-

Catherine Mortimer BTech DPhil

Ancient Monuments Laboratory English Heritage 23 Savile Row London W1X 1AB

© Historic Buildings and Monuments Commission for England

Metalworking debris from Thwing, Yorkshire

Catherine Mortimer

The majority of the industrial material presented for examination takes the form of ferrous slag, but there are several other types of material present. A total of 6.6 kg was investigated in this study. Most contexts contain very small amounts of slag (less than 200g), representing background levels (the amounts of scatter expected at most archaeological sites). These are not considered in detail but are listed below (Table 1). Ferrous and non-ferrous material are considered separately.

The contexts involved are from the late Saxon period, the eighth to the tenth centuries AD. Industrial material is mostly clustered in the first and second sets of palisade trenches, to the north of the centre of the site (Fig 1).

Ferrous metalworking evidence

Six contexts have significant amounts of industrial material (up to 1.25 kg); M7,UK,179; L9, GBB, F4; R8, EJ; O5, FK; Q5, FAK, 52; Q5/R5, FAK, Layer 1, Feature 1. Three of these are assigned late Saxon dates (M7, UK, 179; R8, EJ; Q5, FAK, 52); some fragments of hearth bottom were deposited in an early-ninth century rubbish layer (Q5, FAK, 52) and the other deposits come from the rampart and palisade areas and consist of smithing slag and other, non-diagnostic ferrous slag pieces (R8, EJ; M7, UK 179). The other large deposits are undated and consist of groups of mixed slag (L9, GBB, F4; O5, FK) and of smithing slag (Q5/R5, FAK, Layer 1, Feature 1).

Despite the scattered and low-level nature of the majority of industrial deposits, it is interesting to note the presence of small amounts of clinker and cinder, fuel ash slag, furnace lining and iron ores. These materials are unlikely to have been transported far and confirm the probable existence of an iron-working industry at or near the site. Iron pyrites samples are likely to be from the local geological environment. Haematite may be the product of roasting pyrites at the site.

The data is perfectly consistent with the activity at the site being limited to smithing; very few pieces have characteristics likely to be connected with iron smelting (the pyrites and haematite being possible exceptions).

Non-ferrous metalworking

Two small dribbles of lead and one large round lead block were found at the site (see Table 1). At least one of these pieces has a certain Anglo-Saxon date (N8, ZBX, 494) and the piece of galena (lead ore) was also found in a late Anglo-Saxon context (O9, AAJ, 223). These pieces were all found around the ramparts to the north, but widely-scattered (there is nearly 30m between the two most-distant contexts). The presence of tin and copper (detected by X-ray fluorescence) suggest the lead material had already been partly processed at the time of deposition. A lead-working industry may have been active at the site; although no crucibles have been found at the site, ordinary ceramic containers or sherds could have been used.

1976						
Square	Context	Find/Feature	Date	Туре	Wt	Comment
K4	BP			FAS/Cl	10	
1979						
F12	AB	303	М	S	25	
G11	UB	299	-	Sm	125	
G11	UB	300	-	Sm	50	
1983						
F7	JA	108	AS	Cl	10	
K7	ZB	184	AS	Cl	10	
К9	HA	288	М	Cl	10	
L8	1006B	101		S	75	Dense
L8	F6	109		Cl	10	
L8	GD	111	М	Cl	10	
L8	GA	134		Cl	10	
L8	GAR	138	8th	Cl	10	
L8	GD	139	М	S/?HB	100	
L8	GAR	167	8th	S	10	
L8	GB	170	- • •	?sl	100	
L8	ZDE	4.0.0	9th	Sm	100	
L8	ZAE	108		Cl	10	
L8	HAZ	453		S	20	
L8	GAR	486	8th	S	100	
L8 L9		1007D		FAS	10	
L8 L0	PH F6	202		FAS	10	
L8 M7	DF	382		Cl	20	
M7 M7	BE UK	169 179	9th	FL S	20 225	
M7	Uk	182	9th	5 FL	10	
M7 M7	Uk	203	9th	Fl	10	
M7	Uk	203	9th	FL	20	
M7	ZBA	338	2 011	Fl	20	
M7	ZCV F17		9th	Fe	75	
M7	ZDY F25		9th	S	25	dense
M8	UEY	259	9th	S	100	dense
M8	UBG	267	8th	FAS	10	
M8	UBG	274	8th	FAS	10	
M8	UBG	326	8th	Cl	10	
M8	ZBF F4	(360+another)	8th	FL+Cl	50+10)
M8	UEY	438	9th	Cl	20	
M8	ZBW F28	ZBW		Cl	20	
M8				Sm+FAS+)
M8				S	75	
M9	UK	110	9th	Sm	25	
M9	Uk	114	9th	Cl	10	
M9	ZBR F13		AS	Sm	20	
M9	ZBE F11		AS	Sm	25	
M10	UB	105		Cl	20	. 1
M10	D 3	105		S	10	glassy
N8	BA	(147+another)		S+Cl	30+10)
N8	BAJ	100	10+1-	Sm	75	
08	AAK	166	10th	FAS	10	0110
08	AAJ	202	10th	Sm+Cl+F		0+10
08	AAK		10th	C1?	50	

Table 1: Listing of metalworking deposits

; .

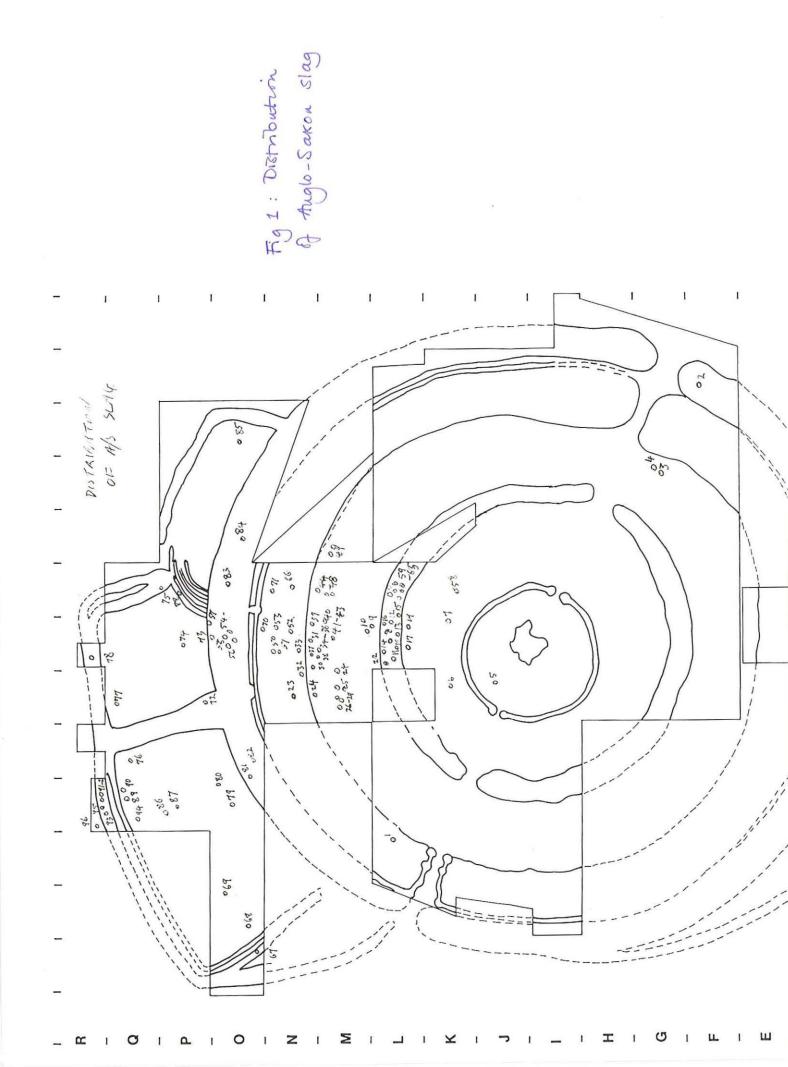
1985					
<u>Square</u>	Context Find/Feature	Date	Туре	Weight	Comment
<u>к9</u>	ZGB F13	AS	S	100	Dense
L9	GBF F1		Sm	125	
L9	GBB F4		S	1250	Mixed
L9	ТВК F5		S+C	10	
L9	GBB F9		Sm	50	
L9	GBE	AS	Sm	50	
L9	GD	М	Sm?	190	
N9	ZGN F23	AS	Р	20	
02	FI F2	AS	Р	100	
02	FD	M	Р	50	
03	FD	М	P	100	
08	AAL Layer 5	10th	S	10	
09	AAQ Layer 3 F1	9th	S	75	dense
P7	EAA Layer 1 F5	9th	Sm+C	50	
P8	AAK Layer 4	10th	?Н	20	
P8	EB	M	P	10	
P9	EL	M	S	20	
Q6	EB	M	ŝ	10	
Q7	EAG F2	AS	ŝ	10	
R8	EJ	9th	Sm	500	
110	20	5 011	Dim	000	
1987					
05	FK		s1?	300	
07	FAP L1 F8		FAS	10	
07	AAJ Layer 3 F3	10th	Sm	200	
07	AB	M	FAS	10	
010	AD AAP 116	9th	F+Cl	10	
010	XP 110	10th	FAS	10	
P5	FD	M	Sm	10	
P9	EC	M	Sm	20	
P9 P9	EC EAF Fill 108	141	FAS		
			Cl	10	
Q5	2			20	
Q5	52	0+1-	HB	225	
Q5	FAK	9th	Sm	125	
Q5	FK 3		FL	10	
Q5/R5	FAK L1 F1		Sm	625	
Q5/R5	FG L1 F1	9th	Sm+C	125	
R5	FD	Μ	Sm	100	
Non-fer:	rous				
NON-LET	LOUS				
Square	Context_Find/Feature	Date	Object ty	ne v	weight
DYNGLE	context i ind/reature	Duce	UNJECC CY		<u>nerdire</u>
1983					
M7	BAJ 17 52		Lead drib	hle	10
N8	ZBX 494	AS	Lead drib		50
N8	BA 23	AD.	Round lead		
110			Nound read	T DIOCK	1200
1987					
09	AAJ 223	10th	Lead ore		50
0,5		TOCH	Dead Ore		50
Distant of		L		G 1	A

....

Finds 494 and 23 are lead with small amounts of Sn and Cu detectable (using surface X-ray fluorescence analysis).

Кеу

ş


<u>Dates</u>

M = modern deposit, hillwash etc. AS = Anglo-Saxon 8th, 9th, 10th = well-dated contexts

<u>Type</u>

S Slag Sm Smithing slag Sl Smelting slag Cl Clinker/Cinder HB Hearth bottom FAS Fuel Ash Slag FL Furnace lining
Fe Metallic iron
C Charcoal
P Pyrites
H Haematite

Weights 10g and 20g are fairly arbitrary indications (ie 'small' and 'quite small')

