Ancient Monuments Laboratory Report 84/93

TREE-RING ANALYSIS OF OAK TIMBERS FROM THE 1991 EXCAVATIONS AT VINDOLANDA, NORTHUMBERLAND

Jennifer Hillam

AML reports are interim reports which make available the results of specialist investigations in advance of full publication They are not subject to external refereeing and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore asked to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in AML reports are those of the author and are not necessarily those of the Historic Buildings and Monuments Commission for England.

Ancient Monuments Laboratory Report 84/93

TREE-RING ANALYSIS OF OAK TIMBERS FROM THE 1991 EXCAVATIONS AT VINDOLANDA, NORTHUMBERLAND

Jennifer Hillam

Summary

14

Analysis of 53 tree-ring samples indicated that 32 were suitable for dating purposes. Lack of sapwood and poor condition of the timbers prevented the production of precise felling dates in most cases, but a master chronology for the period 367BC-AD103 was constructed. The timbers were local in origin and had been felled from mature woodland.

Author's address :-

Jennifer Hillam

Department of Archaeology & Prehistory University of Sheffield Sheffield S10 2TN

[©] Historic Buildings and Monuments Commission for England

TREE-RING ANALYSIS OF OAK TIMBERS FROM THE 1991 EXCAVATIONS AT VINDOLANDA, NORTHUMBERLAND

The tree-ring analysis of 31 samples from excavations prior to 1991 has already been described (Hillam 1991, 1993). A further 53 samples were submitted from the 1991 excavations, of which 32 were suitable for dating purposes and 21 were rejected (Table 1).

Fourteen of the samples analysed came from a lavish period V building which may have been erected by the army to house Hadrian and his entourage when he visited the wall area in AD122. It is suspected, however, that the timbers for this prestigious building may have been brought to Vindolanda from some other stores base, and that they could have been in store for some years (Birley pers comm).

Of the remaining samples suitable for dating purposes (Table 2), one came from period I, which was thought to be *circa* AD85-92 in date (Birley pers comm 1992); three came from period II, *circa* AD92-97; four from period III, *circa* AD97-103, and six from period IV, *circa* AD104-120. Period V is thought to date to *circa* AD121-128; only one sample post-dates this period.

Analysis of the timbers was undertaken to test, and possibly refine, this dating framework which is based on other archaeological evidence. The methodology follows that given in the previous Vindolanda tree-ring report (Hillam 1991, 1993), except that all the computing was done on an Atari microcomputer, using an Epson HI-80 plotter to produce the tree-ring graphs.

<u>Results</u>

After extensive checking, 18 ring sequences were found to match (Fig 1). The levels of agreement between the sequences do not suggest that more than one source of timber had been used (Table 3). An 18 timber master of 445 years was constructed (Table 4). When this was tested against the undated ring sequences, a further sample (931) was found to date.

The 445-year master was next tested against the published Vindolanda chronology (Hillam 1993), and it was found to match

-2-

over the period 367BC-AD78. Comparison with other dated chronologies confirmed this result (Table 5). A final Vindolanda chronology for the period 367BC-AD103 was made by combining the tree-ring data from the two studies (Table 6). This master chronology replaces the previously published version.

Interpretation

Interpretation of the tree-ring results is made difficult by the absence of sapwood on most of the samples (Table 2). In addition several timbers (eg 944, 937, 1100) have been cut from the inner part of a tree. With the exception of 931, which was probably felled in AD92, none of the felling dates are precise. Felling date ranges are produced for four timbers; the remaining felling dates are expressed as *termini post quem* (Table 7).

931 is a timber which is possibly from period II. If this is correct, its probable felling date of AD92 supports the date given by Birley for the start of period II. None of the other results can confirm, refute or refine the proposed dating framework.

The timbers

Although the interpretation of the tree-ring results is disappointing, something can be said about the timbers and the trees from which they were cut. Crossmatching between the Vindolanda ring sequences, and between Vindolanda and other sites in the region, indicates that the timber was local in origin. There was also no difference between the ring sequences from the period V building and other timbers from the site. It is unlikely therefore that the timbers for "Hadrian's building" were brought from elsewhere. Lack of sapwood makes it impossible to deduce whether or not the timbers had been stored.

The length of some of the ring sequences indicates that long-lived oak trees were being felled. 934, for example, contained over 400 rings, without the centre of the tree and most of its sapwood being present. As at Carlisle, therefore, mature local woodland was being exploited.

-3-

Conclusion

Although few precise felling dates were obtained, the study produced a tree-ring chronology for the period 367BC-AD103. It also provided more information about the woodlands exploited by the Romans in northern England.

Acknowledgements

The work was funded by English Heritage. I am also grateful to Ian Tyers for making available unpublished computer software and tree-ring data. Other unpublished tree-ring data were supplied by Mike Baillie and Dave Brown.

References

Brown DM, Munro MAR, Baillie MGL & Pilcher JR 1986 Dendrochronology - the absolute Irish standard. *Radiocarbon* 28 (2A), 279-83.

Groves C 1987 Tree-ring analysis of timbers from Walton-le-Dale, Preston, 1981-83. Ancient Monuments Laboratory report series 136/87.

Groves C 1990 Tree-ring analysis of timbers from Annetwell Street, Carlisle, Cumbria, 1981-84. Ancient Monuments Laboratory report series 49/90.

Groves C 1991 Absolute dating. In MR McCarthy, The structural sequence and environmental remains from Castle Street, Carlisle: Excavations 1981-2, Fascicule 1, 50-53.

Groves C & Hillam J 1993 Tree-ring analysis and dating of timbers. In JD Hurst (ed), Multiperiod Saltmaking at Droitwich, Hereford & Worcester - excavations at Upwich 1983-4, CBA Research Report (forthcoming).

Hillam J 1988 Tree-ring analysis of Roman timbers from Papcastle, Cumbria. Ancient Monuments Laboratory report series 148/88.

Hillam J 1991 Tree-ring analysis of Roman timbers from Vindolanda, Northumberland. Ancient Monuments Laboratory report series 3/91.

Hillam J 1993 The Dendrochronology, Vindolanda Research Reports, New Series III, 120-33.

Hillam J, Morgan RA & Tyers I 1987 Sapwood estimates and the dating of short ring sequences. In RGW Ward (ed), Applications of tree-ring studies: current research in dendrochronology and related areas, BAR S333, 165-85.

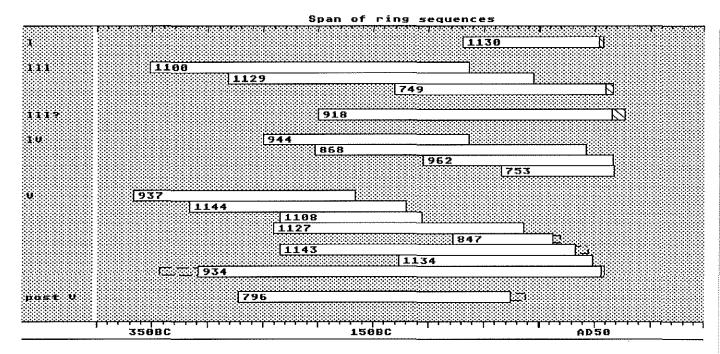


Fig 1: Bar diagram showing the relative positions of the dated ring sequences. White bars - heartwood rings; hatching - sapwood; broken lines - unmeasured rings.

Table 1: List of tree-ring samples unsuitable for dating purposes.

sample	phase	reason for rejection
752	v	unmeasurable narrow rings
793	v	knotty
799	?	too decayed
803	VIa	insufficient rings - less than 50
820	v	alder
824	VIa	insufficient rings
872	III	too decayed
898	III	alder
912	IV	too decayed
922	II?	insufficient rings
929	II	insufficient rings; knotty
930	II	insufficient rings; not oak
948	v	broken and knotty; not oak
959	II	insufficient rings
960	II	elm
961	II	insufficient rings
963	VII	insufficient rings
947	II	alder
966	II	elm
1109	IV	insufficient rings
1128	V	not oak

Table 2: Details of the measured tree-ring samples. Sketches not to scale; sapwood represented by shading. HS - heartwood-sapwood transition; "+" - unmeasured rings present.

.

<u>sample</u>	phase	total no. of rings	sapwood rings	av. ring width (mm)	sketch	dimensions (mm)	comments
749	111	198	6	<u>width (mm)</u> 0.91		190x30	
753	IV.	103	-	1.59		160x85	
783	IV	58	-	1.60		100x65	
796	post V	248+	-	0.95		245x50	plus about 14 outer rings
809	۷	140	-	1.20		165x90	
811	111	50	17	1.92		100x85	bark edge?
819	V	59	-	1.97		135x25	
847	V	91+	-	1.38		285x30	plus 7 outer rings
868	IV	246	-	0.83		210x35	
900	II	94	HS	1.08		135x100	
901	ΤÌ	65	9	1.69		150x90	
918	111?	278	11	1.09		310x25	
921	V	112	1	2.57		305x25	
931	11?	81	7	2.81		245x20	
934	V	+368	2	0.71		305x285	plus about 35 narrow inner rings
937	V	202	-	1.62		330x160	

.

1

.

-

sample	phase	total no. of rings	sapwood rings	av. ring width (mm)	sketch	dimensions (mm)	comments
944A	IV	149+	-	0.74		140x60	plus many narrow rings
В	IV	135+	-	0.79		125x35	plus about 12 rings
A/B	IV	188+	-	0.75	-	-	plus outer rings
952	II .	130	-	1.35		195x50	
962	IV	172	-	0.98		230x170	
985	IV	85	-	1.87		160x40	
1100	111	290	-	0.85		255x40	knot at inside
1108	V	131	-	0.86		115x105	
1122	V	107		1.62		175x20	
1127	V	228	-	0.97		235x45	
1129	111	278	-	0.71		190x85	
1130	I	128+	3+	1.75		230x160	bark present but sapwood unmeasurable
1131	V.	116	-	1.64		265x45	knotty
1134	V	176	-	1.00		315x285	knotty
1143	V .	268+	-	0.85		225x210	plus about 12 rings
1144	V	198	-	0.75		155x155	
1149	1?	43	13	2.62		140x125	felled winter
1160	V	88+	18+	1.87		180x120	plus about 20 rings to bark edge

.

×

.

Table 2/cont

Table 3: t value matrix for the 1991 samples. Values less than 3.0 are not printed; / - overlap less than 15 years.

File 1 = D:\VINDLNDA\V0749.D File 2 = D:\VINDLNDA\V0753.D File 3 = D:\VINDLNDA\V0796.D File 4 = D:\VINDLNDA\V0847.D File 5 = D:\VINDLNDA\V0868.D File 6 = D:\VINDLNDA\V0918.D File 7 = D:\VINDLNDA\V0934.D File 8 = D:\VINDLNDA\V0937.D File 9 = D:\VINDLNDA\V0944.D File 10 = D:\VINDLNDA\V0962.D File 11 = D:\VINDLNDA\V1100.D File 12 = D:\VINDLNDA\V1108.D File 13 = D:\VINDLNDA\V1127.D File 14 = D:\VINDLNDA\V1129.D File 15 = D:\VINDLNDA\V1130.D File 16 = D:\VINDLNDA\V1134.D File 17 = D:\VINDLNDA\V1143.D File 18 = D:\VINDLNDA\V1144.D

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
V0749		3.4	3.7	6.1	3.5	4.3	1	3.2	8.1	4.1	5.9	3.1	3.4	3.7	6.7		١
V0753		١		5.8		3.4	1	\	3.8	\	1			3.8	3.4		١
V0796				7.2	5.2	5.1	3.9	5.2	5.7	6.4		5.0	7.0		3.2	5.4	4.7
V0847							١		3.9		1			5.0	4.3		١
V0868					6.2			5.5	6.9	6.8		4.0	3.6	5.5	4.3	4.3	4.8
V0918						3.4		4.6		5.4			3.2	3.3		6.0	3.2
V0934							3.5	3.6	4.0	5.2		5.4	4.1	3.4	5.9	4.2	5.0
V0937									١	4.3			5.5	١	1		5.2
V0944										5.7	4.6		3.8	١		3.5	4.5
V0962											١	4.9	4.4	3.8	6.5		١
V1100											4.3		5.1	\		3.9	5.8
V1108													3.4	١		4.7	3.0
V1127														3.7		3.4	6.0
V1129															3.1	4.6	4.3
V1130															3.5		١
V1134																3.4	١
v1143																	3.3

Table	4:	1	991	Vi	ind	ola	nda	a s	amp	les	-	18	8 1	ti	mb	er	me	ea	n,	36	1
<u>date</u> 367BC	381	339	<u>r</u> 264	215		162	196	253		290 167	1	1	<u>no</u> 1	<u>. 0</u> 1 1	<u>fs</u> 1 1	<u>amp</u> 1 1	<u>les</u> 1 1	1	1 2	1 2	
350BC	220 160	239 128 186	150 235 101 200 108	202 140 165	165 161 181	218 169 178	200 151 183	178 172 174	307 170 194	185 196 137	2 2 2 2 3	2 2 2 2 4	2 2 2 2 4	2 2 2 3 4	2 2 2 3 4		2 2 2 3 4	2 2 2 3 4	2 2 2 3 4	2 2 3 4	
300BC	148 151	81 158	146 118 134 116 87	138 128	112 132	159 146	124 144 78	142 130 89	149	141 159 97	4 5 6	4 4 5 6	4 4 5 6	4 5 6	4 4 5 6		4 5 6	4 4 5 6	4 5 6 6	4 5 6 6	
250BC	100 96 95 111 82	101 107 93 79 86	83 83 102 81 70	94 95 98 84 58	97	106 87 105 91 75	98 82 98 91 76	92 76 93 87 82	89 104 97 80 79	96 82 97 75 77	10	7 8 10 10 10	10	10	10 10	10 10	10	10 10	10 10		
200BC	87 77 93 84 100	78 91 87 85 100	72 102 91 87 82	78 103 70 86 71	84 97 90 93 90	94 101 93 96 82	78 92 95 88 75	91 95 85 83 91		98 101 102 90 99	12 12 12	12 12 12 12 12	12 12 12	12 12 12	12 12 12	12 12 11	12 12 11	12 12 11	12 12 11	12 12 11	
150BC	83 83 79 97 100	88 84 81 103 85	89 84 76 97 89	102 82 85 95 86	101 71 112 90 79	90 83 93 99 82	68 64 89 85 74	87 64 54 75 73	78 79 75 86 84	93 87 91 96 78	11 12 13	11 11 12 12 12	12 12	11 13 12	13 12	11 13 12	13 12	11 13 12	11 13 12	12	
100BC	71	90 79 89 118 85		98 116	80 102 119	107 107	106	94 110	89	71 87	12 13	12 12	12 13 14	12 13 14	12 13 14	12 13 14	12 13 14	12 13 14	12 13 12	12 13 12	
50BC	78 80 104	68 104	60 59 78 95 111	75 110 98	103 110 102	94 115 82	101 117 89	125 119 107	125 134 103	117 115 98	12 12 13 12 11	12 13	12 13 12	12 13 12	12 13 12	12 13 12	13 12 12	13 12 11	13 12 11	13 12 11	
AD1		110 93	88 81 109	108 90 96 79 126	93 87 96	88 96 95		106 100 115	90 93 102	104 82 91	10 10 9 8	10 10 9 9 8		10 9 9 8 7		10 9 9 8 7	10 9 9 8 7	10 9 9 8 7	10 9 9 8 7	10 9 9 8 6	
AD51	103 95 75	90 97 82	87 90 79	87	109 100 62	98	98 89 69	75 92 68		74 69	6 4 1				4		6 4 1	6 2 1	6 2	4 1	

Table 4: 1991 Vindolanda samples - 18 timber mean, 367BC to AD78

,

Table 5: Comparison of the Vindolanda masters with chronologies from elsewhere.

<u>chronology</u>	<u>VIN90</u>	<u>VIN91 V</u>	/IN90/91
Alcester (Baillie & Brown pers comm)	5.0	5.4	4.9
Carlisle, Annetwell St (Groves 1990)	12.6	13.8	14.7
Carlisle, Castle Street (Groves 1991)	8.9	10.0	9.9
Castleford, W Yorks (Hillam unpubl)	5.8	4.5	5.4
Droitwich, Upwich (Groves & Hillam 1993)	5.6	5.8	6.0
Greater London T95 (Tyers pers comm)	5.2	3.7	4.6
Northern Ireland (Brown et al 1986)	10.4	11.7	12.3
Papcastle, Cumbria (Hillam 1988)	5.6	6.2	6.3
Walton-le-Dale, Lancs (Groves 1987)	6.9	6.1	6.9

Table 6: Vindolanda chronology, 367BC to AD103, made up from the 1990 and 1991 tree-ring samples.

<u>date</u> 367BC	381 339	215 203	lths (0.01mm 3 162 196 25 9 254 234 27	53 282 290	<u>no. of samples</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
350BC	220 240 160 128 219 187	236 203 166 101 140 162 200 165 182	207 158 20 218 200 17 170 151 17 179 184 15 123 134 15	78 308 185 72 170 197 75 195 138	2 3 3 3 3 3 3 3 3
300BC	149 82 152 158	148 148 117 119 139 112 135 129 133 116 122 142 88 103 82	147 145 13 109 79 9	43 150 141	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
250BC	100 102 105 113 99 96 115 80 89 90	96 102 91 90 101 101 107 108 90 83 90 96 74 61 90	97 87 8 113 104 9 96 101 9	96 93 103 84 109 92 97 99 105 91 85 79 94 85 83	7 7 8 8 8 9 9 9 10 10 10 10 10 13
200BC	90 78 74 93 95 90 85 76 99 95	74 79 84 101 93 96 94 67 89 84 81 88 81 70 92	5 102 93 9 97 96 8 93 83 8	91 92 98 95 78 101 87 93 99 86 78 93 92 94 98	14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14
150BC	83 85 84 86 83 84 94 106 111 95	90 101 111 85 86 79 78 85 121 96 99 89 98 97 82	91 66 5 100 91 5 99 87 7	84 74 93 58 76 85 54 69 89 74 87 102 79 97 90	14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 17 17 16 16 16 16 16 17 16 16 16 16
100BC	96 104 87 89 81 102 88 118 96 77	100 89 85 105 99 106 97 110 115	96 84 8 109 118 10 106 102 10		16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 17 17 16 16 16 16 16 16 16 16 16 16 16
50BC	74 63 76 52 81 70 103 101 98 119	60 88 84 59 73 104 76 108 109 94 94 98 98 106 118	94 100 12 115 113 11 79 85 10	21 127 118	16 16 16 15 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13
AD1	129 110 91 104 101 89 105 120 105 111	80 86 88 80 96 94 115 87 95	84 84 10 98 115 9	05 93 102 99 96 87 16 107 95	13 <td< td=""></td<>

<u>Table 6/cont</u>

ł

date			r	ings	widt	ths	(0.0)	l mm)					no	. of	[sa	ampl	les			
<u>date</u> AD51	98	92	89	104	107	107	104	75	85	82	9	9	9	9	9	9	8	8	8	6
	95	110	105	103	104	112	95	115	101	105	6	6	6	6	6	6	6	4	4	3
	79	75	101	133	87	111	113	123	137	131	3	3	3	3	3	3	3	3	3	3
	131	149	125	97	65	87	101	121	91	91	3	3	2	2	2	2	2	2	2	2
	103	127	139	87	125	143	131	117	161	153	2	2	2	2	2	1	1	1	1	1
AD101	127	93	79								1	1	1							

Table 7: Summary of the tree-ring dates. A sapwood estimate of 10-55 rings is used (Hillam et al 1987).

		date span		
sample	phase	of rings	comment	felled
1130	Ι	69BC-AD59	3 sapwood rings	AD66-111
931	II?	AD2-82	+ c.10 to bark?	c.AD92
749	III	131BC-AD67	6 sapwood rings	AD71-116
1100	III	352-63BC		53BC+
1129	III	282-5BC		AD5+
918	III?	200BC-AD78	11 sapwood rings	AD79-122
753	IV	34BC-AD69		AD79+
868	IV	203BC-AD43		AD53+
944	IV	250-63BC		53BC+
962	IV	105BC-AD67		AD77+
847	V	78BC-AD13	+ 7 rings	AD23+
934	v	309BC-AD59	2 sapwood rings	AD67-112
937	v	367 - 166BC		156BC+
1108	v	235-105BC		95BC+
1127	v	241-14BC		4BC+
1134	v	127BC-AD49		AD59+
1143	v	235BC-AD33	+ c.12 rings	AD55+
1144	v	317-120BC	2	110BC+
796	post V	272-25BC	+ c.14 rings	1BC+