ZIIO

Ancient Monuments Laboratory Report 10/94

THE DATING OF OAK TIMBERS FROM THE WOOTTON QUARR SURVEY, ISLE OF WIGHT

Miss Jennifer Hillam

Ę

AML reports are interim reports which make available the results of specialist investigations in advance of full publication They are not subject to external refereeing and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore asked to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in AML reports are those of the author and are not necessarily those of the Historic Buildings and Monuments Commission for England.

Ancient Monuments Laboratory Report 10/94

THE DATING OF OAK TIMBERS FROM THE WOOTTON QUARR SURVEY, ISLE OF WIGHT

Miss Jennifer Hillam

#### Summary

٤

The tree-ring analysis and dating of 32 wood samples are described. All but two of the samples were from fallen oak trees. A group of 20 timbers crossmatched to produce a 770-year chronology which spans a period 3463-2694 BC. The trees fell at intervals between 3230 BC and 2694/3 BC. A 268-year floating chronology was produced from three other ring sequences. Radiocarbon dating indicates that this undated chronology is slightly older than the 770-year chronology, whilst other undated ring sequences are younger.

Author's address :-

Miss Jennifer Hillam

Department of Archaeology & Prehistory University of Sheffield Sheffield S10 2TN

© Historic Buildings and Monuments Commission for England

# THE DATING OF OAK TIMBERS FROM THE WOOTTON QUARR SURVEY, ISLE OF WIGHT

## **Introduction**

1

The Wootton Quarr Survey project is the second phase of the Wootton Creek project. Phase 1, the field evaluation project, was carried in 1990 by the County Archaeological Unit. It produced six oak timbers for tree-ring analysis from along the eroding beach. Two of these were dated by dendrochronology to the Neolithic period whilst radiocarbon dating indicated that three others dated to between 2195 and 1750 Cal BC (UB-3271, 3528±37; UB-3272, 3640±38; and UB-3274, 3681±38 (see Table 7 and Hillam 1991).

Phase 2 produced 26 samples for analysis (Table 1). Sample 1000005 is a post from one of several post alignments on Quarr beach (site 2027, NGR SZ574932). It was the only post which appeared to have sufficient rings for dating purposes. All but one of the remaining samples are from fallen trees. Samples 1000013-22, 1001835, 1002153, 1002347, 1002368-9, and 1002382-3 are also from Quarr beach. Samples 1000023-1000028 are from Fishbourne beach, which produced the 1990 tree-ring samples (site 1526, NGR SZ559932). The final site is Newton East Spit (site 2175, NGR418921). This is in the western Solent, about 16km west of the other two sites, and is being used as a control site to test for continuity in marine advance in the Solent valley. It produced two samples: 1002312 is from a fallen tree, and 1002386 is from one of the timbers in a trackway or platform. A piece of *Corylus* from the structure had already been radiocarbon dated to 2920-2505 Cal BC (GU-5341, 4160±70 BP)<sup>1</sup>.

Tree-ring analysis was undertaken in 1993 and early 1994 with the following aims:

- 1. to provide absolute or relative dates for the timbers,
- 2. if absolute dates were not obtained, to provide information which would enable the most efficient use to be made of radiocarbon dating,
- 3. to provide information about the prehistoric woodland which had produced the fallen trees,
- 4. to consolidate and extend the 331-year tree-ring chronology obtained from the Phase 1 study, which spans the period 3059-2729 BC. This final aim coincides with a larger research project being undertaken at the Sheffield Dendrochronology Laboratory, which is to produce a well-replicated tree-ring chronology covering the prehistoric period. Since research at the Belfast Tree-Ring Laboratory has produced chronologies for north-west England and East Anglia (Baillie and Brown 1988; Brown and Baillie 1992), the Sheffield research is concentrating on samples from southern England (eg Hillam *et al* 1990).

This report describes the results of the 1993/4 Phase 2 analysis and also incorporates the results from the Phase 1 field evaluation project. For ease of computation, all the samples numbers have been abbreviated; for example, 1000005 becomes 5 and 6050001 becomes 605 (Table 1).

<sup>&</sup>lt;sup>1</sup>All calibrated date ranges cited in the text are quoted at two standard deviations. All radiocarbon results are calibrated using the datasets published by Pearson and Stuiver 1986 (500-2500 BC) and Pearson *et al* 1986 (2500-5210 BC).

#### **Methods**

ę.

The larger samples were spilt radially into segments for ease of handling. The samples were prepared by freezing them for at least 48 hours and then cleaning their cross-sections with a surform plane. The ring widths were measured to an accuracy of 0.01mm on a travelling stage which is connected to an Atari microcomputer. The Atari uses a suite of dendrochronology programs written by Ian Tyers (pers comm 1992). The measured ring sequences were plotted as graphs using an Epson HI-80 plotter, also connected to the Atari. Crossmatching was carried out first visually by comparing the graphs on a light box, and then using a computer program to measure the amount of correlation between two ring sequences. The crossmatching routines are based on the Belfast CROS program (Baillie and Pilcher 1973; Munro 1984), and all the t values quoted in this report are identical to those produced by the first CROS program (Baillie and Pilcher 1973). Generally *t* values of 3.5 or above indicate a match provided that the visual match between the tree-ring graphs is acceptable (Baillie 1982, 82-5).

Dating is achieved by averaging the data from the matching sequences to produce a site master curve, and then testing that master for similarity against dated reference chronologies. A site master is used for dating whenever possible because it enhances the general climatic signal at the expense of the background noise from the growth characteristics of the individual samples. Any unmatched sequences are tested individually against the reference chronologies. All potential tree-ring dates are then checked by examining the quality of the visual match between the graphs.

If a sample has bark or bark edge, the date of the last measured ring is the date in which the tree died or was felled. A complete outer ring indicates that the tree was felled during its period of dormancy between late autumn and early spring (referred to as "winter felled"). A partially formed ring indicates that the tree was felled in late spring or summer (known as "summer felled"), although it is not always possible to distinguish between an incomplete ring and a complete narrow ring. In the absence of bark edge, felling dates are calculated using the sapwood estimate of 10-55 rings. This is the range of the 95% confidence limits for the number of sapwood rings in British oak trees over 30 years old (Hillam *et al* 1987). Where sapwood is absent, felling dates are given as *termini post quem* by adding 10 years, the minimum number of missing sapwood rings, to the date of the last measured heartwood ring. The actual felling date could be much later depending on how many heartwood rings have been removed or eroded.

#### <u>Results</u>

### 1. The timbers.

All the samples were oak (*Quercus* spp.). Sample 5 from a stake alignment was roughly a quarter segment from a tree measuring about 280-300mm in diameter (Table 1). It would have been approximately 95-100 years old when it was felled. It contained 91 rings including 22 sapwood rings and possible bark edge, but it was estimated that 5-10 rings were missing from the inside of the tree. 2386 from the Newtown East Spit platform had 116 rings but no sapwood or pith. The tree could have been well over 200 years old

when it was felled. It is impossible to determine how the timber was worked because of erosion of the wood, but it probably utilises no more than one quarter of the tree trunk.

The samples from the fallen trees were generally from much older and larger trees which had been badly eroded by the tides. Samples 17, 2153, and 2369 from the Quarr beach; 28, 182, 263, 603, and 604 from Fishbourne beach, and 2312 from Newtown East Spit still had their piths (the centre of the trunk). All that was left of the remainder was the eroded bottom half of the fallen tree. It is therefore not possible to determine the exact size and age of the trees. Many were probably older than 200 years when they fell and some may have been over 300 (eg 15, 24, and 602). Sample 603, which had bark and pith, was about 330 years old when it died. The slight uncertainty about the number of rings is due to the narrowness of the outer sapwood rings which made accurate measurement impossible. The outer few rings were therefore counted rather than measured so as not to distort the ring width data. Tree 2153 was of a similar age when it fell.

The tree diamters probably varied from 400-500mm (eg 17) up more than 1m (eg 602). The average ring widths were generally narrow (Table 1). Many of the trees grew at a rate of around 1mm per year. Sample 28 at 1.97mm was the fastest grown tree, whilst 263 at 0.43mm was the slowest. These rates of growth suggest that the trees were from dense woodland, possibly also stressed by exposure to sea winds.

### 2. Tree-ring dating.

The samples were measured in groups of six or seven in no particular order, and the first group tested for crossmatching before proceeding to the second group and so on. For simplicity, however, the results will not be described step-by-step but will be summarised for the group as a whole.

The samples from the fallen trees had 97-317 rings (Table 1). Sapwood and bark were present on several samples but the outer rings were often badly compressed or very narrow. It was possible to measure out to the bark surface on only ten samples (21, 23, 24, 263, 602, 2153, 2312, 2347, 2369, and 2383). On five other samples (15, 18, 182, 603, and 1835), it was possible to count the unmeasured rings up to the bark edge.

When the ring sequences were compared with each other, two groups of matching sequences were formed. The first group matched the 602/604 chronology from Phase 1 which spanned the period 3059-2729 BC (Hillam 1991). The second group contained five samples but was floating in time. A radiocarbon sample from tree-ring sample 20 indicated that this group was older than the first group (see below). As more samples were analysed, the two groups were eventually linked together to form a 770-year sequence covering the period 3463-2694 BC (Fig 1). The twenty matching ring sequences included in the new master chronology correlated well together (Table 2), whilst the chronology itself (Table 3) was similar to other British tree-ring chronologies (Table 4).

A second group of three sequences was crossmatched to give a chronology of 268 years (Tables 5, 6). Although this was tested against the 770-year Isle of Wight chronology, plus other prehistoric reference chronologies (see Appendix), no reliable dating was obtained. A section from sample 21 was therefore submitted for radiocarbon analysis. The radiocarbon result dates years 23-43 of sample 21 to 3675-3360 Cal BC (GU-5299, 4730±60 BP), which suggests that this 268-year sequence probably lies off the older end of the main 770-year sequence.

The unmatched samples were also tested against the reference chronologies. A tentative date in the 26th century BC was obtained for sample 28 but at present this cannot be confirmed. No dating was obtained for samples 5, 182, 263, 603, 605, 2347, 2383, or 2386. Most of these have under 100 rings and may possibly never be dated by dendrochronology. However, 603, with 317 rings, may eventually date as more timbers are analysed.

### 3. Radiocarbon dating.

The radiocarbon results from, or associated with, the timbers are summarised in Table 7. The radiocarbon samples were submitted at intervals throughout the project, mostly from the Sheffield Dendrochronology Laboratory as an aid to the tree-ring analysis. The radiocarbon result from timber 20, for example, indicated that this ring sequence, one of an undated group of five, was older than those in the original Isle of Wight master sequence. As more samples were analysed dendrochronologically, this proved to be true. Other timbers with radiocarbon dates, for example 603, have not yet been dated by dendrochronology. However, if the radiocarbon results are combined with those from dendrochronology (Table 8), an indication of the chronological coverage of the ring sequences is obtained.

### Chronological coverage of the timbers

The oldest known timbers are the group of three (16, 21, and 1835) which make up the 268-year master chronology. Although undated by dendrochronology, the radiocarbon results indicate that years 23-43 fall within the  $2\sigma$  range of 3675-3360 Cal BC (GU-5299, 4730±60 BP; Table 7).

After this, dendrochronology provides a precise dating framework for the twenty trees which make up the Isle of Wight chronology (Fig 1, Table 8). The oldest group dated by dendrochronology come from Quarr Beach (Fig 2). Timber 18 fell in about 3230 BC, the slight uncertainty being caused by a few narrow rings near the bark surface. 15 fell in 3140-3137 BC. Timbers 14, 19, 20, and 2382 may also have died around this time, but lack of sapwood makes it impossible to determine the exact year of death. 2368 died after 3146 BC, and 2153 in 3072/1 BC. Then there are two dated trees from Fishbourne Beach: 27 fell after 3088 BC, and 23 in 3011/0 BC, possibly in the summer of 3010 BC. 17 and 22 from Quarr Beach and 26 from Fishbourne Beach died after 2928 BC, 2918 BC, and 2909 BC respectively. 2369 from Quarr fell in 2879 BC, probably summer, whilst 24 and 602 from Fishbourne fell in 2777/6 BC, probably in winter. 25 and 604 from Fishbourne died after 2688 BC and 2719 BC respectively, and 13 from Quarr some time in the period 2699-2663 BC. Finally the single dated timber from Newtown East Spit (2312) probably died in 2694/3 BC.

For the deaths of trees younger than 2694/3, it is necessary to return to the radiocarbon results. Rings 44-62 from Fishbourne timber 28 has a  $2\sigma$  date range of 2880-2495 Cal BC (GU-5298, 4100±50 BP). 2386 from the Newtown East Spit platform appears to be broadly contemporary. Also from Fishbourne Beach are a group of three trees (182, 263, and 603) which date to between 2195 and 1750 Cal BC (see above and Table 7). There are no matches between the ring sequences from these three samples. The youngest dated sample from amongst those sent for tree-ring analysis is stake 5 from Quarr Beach which has a  $2\sigma$ calibrated date range of 400-200 Cal BC (GU-5253, 2270±50 BP).

There appears to be no distinct trend in the average ring widths through this chronological spread of timbers. For example, 24 and 602, both felled in 2777/6 BC, have average ring widths of 0.82mm and 1.77mm respectively (Table 8). Many of the trees at the Fishbourne and Quarr sites show very narrow rings but this is not dependent on time. It appears that the trees were subject to stressful growing conditions throughout much of the prehistoric period.

## **Conclusion**

Dendrochronology and radiocarbon dating indicate that trees were growing near Quarr Beach (site 2027) from at least 3463 BC to 2699 BC, and near Fishbourne Beach (site 1526) from 3282 BC to between 2195 and 1750 Cal BC. The trees, which were often relatively long-lived and subject to severe conditions of growth, fell at intervals during these periods. As well as a detailed dating framework, the study has also produced a well-replicated tree-ring chronology for the 770-year period 3463-2694 BC.

### **Acknowledgements**

The tree-ring analysis was funded by English Heritage. I am also grateful to Mike Baillie and Dave Brown for providing unpublished tree-ring chronologies, and Ian Tyers for unpublished computer programs.

#### **References**

Baillie, M G L, 1982 Tree-Ring Dating and Archaeology, London

Baillie, M G L, and Brown, D M, 1988 An overview of oak chronologies, in *Science and Archaeology, Glasgow 1987* (eds E A Slater and J O Tate), BAR Brit Ser, 196, 543-548

Baillie, M G L, and Pilcher, J R, 1973 A simple crossdating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7-14

Brown, D M, & Baillie, M G L, 1992 Construction and dating of a 5000 year English bog oak tree-ring chronology, in *Tree Rings and Environment*, LUNDQUA report **34**, 72-75

Brown, D M, Munro, M A R, Baillie, M G L, and Pilcher, J R, 1986 Dendrochronology - the absolute Irish standard, *Radiocarbon*, **28** (2A), 279-83 Hillam, J, 1991 The dating oak timbers from Wootton Creek, Fishbourne, Isle of Wight - an interim report, Anc Mon Lab Rep, 47/91

Hillam, J, Groves, C M, Brown, D M, Baillie, M G L, Coles, J M, and Coles, B J, 1990 Dendrochronology of the English Neolithic, *Antiquity*, 64, 211-20

Hillam, J, Morgan, R A, and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, in *Applications of tree-ring studies: current research in dendrochronology and related areas* (ed R G W Ward), BAR Int Ser, **333**, 165-85

Munro, M A R, 1984 An improved algorithm for crossdating tree-ring series, *Tree Ring Bulletin*, 44, 17-27

Neve, J, 1992 An interim report on the dendrochronology of Flag Fen and Fengate, Antiquity, 66, 470-75

Pearson, G W, and Stuiver, M, 1986 High-precision calibration of the radiocarbon time scale, 500-2500 BC, *Radiocarbon*, **28**, 839-62

Pearson, G W, Pilcher, J R, Baillie, M G L, Corbett, D M, and Qua, F, 1986 High-precision <sup>14</sup>C measurement of Irish oaks to show the natural <sup>14</sup>C variations from AD 1840 to 5210 BC, *Radiocarbon*, **28**, 911-34



Span of ring sequences

8 5

| <u>Key</u>  |                    |
|-------------|--------------------|
| White bars  | - heartwood rings  |
| Hatching    | - sapwood          |
| Broken bars | - unmeasured rings |
| В           | - bark edge        |

\* \*

Fig 1: Bar diagram showing the chronological spread of the dated ring sequences.



Fig 2: Bar diagram showing the relative positions of the dated ring sequences from each site.

Table 1: Details of the tree-ring samples. Cross-sectional sketches are not to scale; HS - heartwoodsapwood transition; "+" - unmeasured rings. Sample numbers have been shortened for ease of computation: 5-28 are 1000005-1000028; 182-605 are 1820001-6050001; 1835-2386 are 1001835-1002386.

\$

,

| samp       | le   | total | sapwood | av. ring   |        | dimensions |                                        |
|------------|------|-------|---------|------------|--------|------------|----------------------------------------|
| <u>no.</u> | site | rings | rings   | width (mm) | sketch | (mm)       | comments                               |
| 5          | 2027 | 91    | 22      | 1.54       |        | 175x140    | post; felled winter?                   |
| 13         | 2027 | 183   | 18      | 1.55       | 重重     | 490x380    | very knotty                            |
| 14         | 2027 | 243   | -       | 0.92       |        | 480x240    |                                        |
| 15         | 2027 | 207+  | 4+      | 0.68       |        | 330x250    | plus 57-60 rings to bark edge          |
| 16         | 2027 | 109   | -       | 1.61       |        | 315x170    |                                        |
| 17         | 2027 | 145   | -       | 1.31       |        | 345x250    |                                        |
| 18         | 2027 | 173   | 33      | 1.08       |        | 345x190    | plus about 4 to bark                   |
| 19         | 2027 | 178   | -       | 0.92       |        | 260x180    |                                        |
| 20         | 2027 | 156   | -       | 1.44       |        | 350x210    | sapwood not<br>measurable              |
| 21         | 2027 | 260   | 25      | 0.91       |        | 500x290    | bark edge?                             |
| 22         | 2027 | 214   | -       | 1.04       | -      |            | sample broken                          |
| 23         | 1526 | +200  | 33      | 1.08       |        | 515x310    | plus 63 inner rings;<br>felled summer? |

| sampl      | e    | total | sapwood | av. ring   |        | dimensions |                                                        |
|------------|------|-------|---------|------------|--------|------------|--------------------------------------------------------|
| <u>no.</u> | site | rings | rings   | width (mm) | sketch | (mm)       | comments                                               |
| 24         | 1526 | 282   | 26      | 0.89       |        | 390x275    | felled winter?                                         |
| 25         | 1526 | 213+  | -       | 0.83       |        | 340x185    | knotty; plus many<br>narrow rings                      |
| 26         | 1526 | 177+  | -       | 1.15       |        | 380x215    | plus narrow rings                                      |
| 27         | 1526 | 185+  |         | 0.75       |        | 295x150    | plus narrow rings                                      |
| 28         | 1526 | 138   | -       | 1.97       |        | 450x345    |                                                        |
| 182        | 1526 | +83+  | 24      | 0.53       |        | 250x160    | rings mostly too<br>narrow; about 83-6 to<br>bark edge |
| 263        | 1526 | +58   | 56      | 0.43       |        | 180x165    | inner rings too<br>narrow; felled summer               |
| 602        | 1526 | 283   | 26      | 1.77       |        | 530x530    | bark edge                                              |
| 603        | 1526 | 317+  | 22+     | 0.62       |        | 400x400    | about 13 rings to bark<br>edge                         |
| 604        | 1526 | +217  | -       | 0.75       |        | 490x340    | inner rings too narrow                                 |
| 605        | 1526 | , 76  | -       | 2.46       |        | 220x200    |                                                        |
| 1835       | 2027 | 235+  | -       | 0.64       |        | 450x170    | 21 rings to<br>bark edge                               |
| 2153       | 2027 | 330   | 27      | 0.71       |        | 390x330    | felled winter?                                         |

2 S 

| sample     | ;    | total | sapwood | av. ring   |        | dimensions |                                             |
|------------|------|-------|---------|------------|--------|------------|---------------------------------------------|
| <u>no.</u> | site | rings | rings   | width (mm) | sketch | (mm)       | comments                                    |
| 2312       | 2175 | +132  | 35      | 0.68       |        | 220x185    | inner 32 rings<br>unmeasured; bark<br>edge? |
| 2347       | 2027 | +100  | -       | 1.02       |        | 260x195    | bark; inner rings<br>unmeasured             |
| 2368       | 2027 | 205+  | -       | 0.59       |        | 380x140    | plus at least 36 rings                      |
| 2369       | 2027 | 186   | 30      | 0.84       |        | 465x290    | bark edge - ?felled<br>summer               |
| 2382       | 2027 | 121   | -       | 1.56       |        | 295x200    |                                             |
| 2383       | 2027 | 97    | 41      | 1.29       |        | 230x140    | felled winter                               |
| 2386       | 2175 | 116   | -       | 1.71       |        | 340x210    | timber from platform or causeway            |

· ·

ι

1. <sup>1</sup> ¢

|    | 13 | 14 | 15  | 17 | 18  | 19  | 20  | 22  | 23  | 24  | 25  | 26  | 27  | 602 | 604  | 2153 | 2312 | 2368 | 2369 | 2382 |
|----|----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| 13 | *  | ١  | 1   | ١  | ١   | /   | ١   | /   | ١   | 5.7 | 8.3 | ١   | \   | 3.2 | 4.8  | 1    | 4.4  | ١    | 1    | 1    |
|    | 14 | *  | 5.6 | ١  |     | 5.1 | 3.8 | ١   | ١   | ١   | ١   | ١   |     | ١   | ١    |      | ١    |      | ١    |      |
|    |    | 15 | *   | ١  | 6.3 | 5.6 | 4.2 | ١   |     | ١   | ١   | ١   | 4.8 | ١   | ١    | 5.2  | ١    | 5.3  | ١    | 4.8  |
|    |    |    | 17  | *  | ١   | ١   | ١   | 7.1 | 6.0 | 6.3 | ١   | 7.8 | ١   | 5.3 | ١    | ١    | ١    | ١    | 7.2  | ١    |
|    |    |    |     | 18 | *   | 6.2 | 4.8 | ١   | ١   | ١   | ١   | ١   |     | ١   | ١    | 7.8  | ١    | 5.3  | ١    | 5.5  |
|    |    |    |     |    | 19  | *   | 5.2 | ١   | ١   | ١   | ١   | ١   | 3.7 | ١   | ١    | 5,8  | ١    | 4.4  | ١    | 4.5  |
|    |    |    |     |    |     | 20  | *   | ١   | ١   | ١   | ١   | ١.  | 4.9 | ١   | ١    | 6.4  | ١    | 3.2  | ١    | 4.2  |
|    |    |    |     |    |     |     | 22  | *   | 7.9 | 5.3 | ١   | 8.8 | 4.0 | 5.7 |      | 3.5  | ١    | ١    | 7.4  | ١    |
|    |    |    |     |    |     |     |     | 23  | *   | 4.8 | ١   | 6.4 | 6.8 | 5.6 | ١    | 3.0  | ١    |      | 4.2  | ١    |
|    |    |    |     |    |     |     |     |     | 24  | *   | 8.2 | 58  | ١   | 6.8 | 4.6  | ١    | 4.3  | ١    | 6.3  | ١    |
|    |    |    |     |    |     |     |     |     |     | 25  | *   | ١   | ١   | 4.0 | 8.0  | ١    | 7.2  | ١    |      | ١    |
|    |    |    |     |    |     |     |     |     |     |     | 26  | *   | ١   | 5.8 |      | 4.6  | ١    | ١    | 10.1 | ١    |
|    |    |    |     |    |     |     |     |     |     |     |     | 27  | *   | ١   | ١    | 7.8  | ١.   | 4.6  | ١    | 4.6  |
|    |    |    |     |    |     |     |     |     |     |     |     |     | 602 | *   | 6.2  | ١    |      | ١    | 9.4  | ١    |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     | 604 | *    | ١    | 4.8  | ١    |      | ١    |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     |     | 2153 | *    | ١    | 4.5  | ١    | 5.5  |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     |     |      | 2312 | *    | ١    | /    | ١.   |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     |     |      |      | 2368 | *    | ١    | 3.3  |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     |     |      |      |      | 2369 | *    | ١    |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     |     |      |      |      |      | 2382 | *    |
|    |    |    |     |    |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |

Table 2: t value matrix showing the level of correlation between the dated ring sequences. Values less than 3.0 are not listed; / - overlap less than 15 years.

| year    |       |     |     | ring v | vidths | <u>(0.01</u> | lmm) |     |      |           |        |     |        | num    | ber    | of sa  | ımpl     | es |          |     |
|---------|-------|-----|-----|--------|--------|--------------|------|-----|------|-----------|--------|-----|--------|--------|--------|--------|----------|----|----------|-----|
| 3463 BC | 193   | 132 | 129 |        |        |              |      |     |      |           | 1      | 1   | 1      |        |        |        |          |    |          |     |
|         | 151   | 223 | 156 | 116    | 179    | 108          | 141  | 192 | 153  | 120       | 1      | 1   | 1      | 1      | 1      | 1      | 1        | 1  | 1        | 1   |
| 3450 BC | 133   | 133 | 153 | 177    | 126    | 101          | 139  | 72  | 97   | 87        | 1      | 1   | 1      | 1      | 1      | 1      | 1        | 1  | 1        | 1   |
| 5100 20 | 114   | 87  | 71  | 124    | 96     | 113          | 64   | 47  | 95   | 94        | 1      | 1   | 1      | 1      | 1      | 1      | 1        | 1  | 1        | 1   |
|         | 68    | 87  | 01  | 01     | 87     | 03           | 03   | 84  | 85   | 76        | 1      | ī   | 1      | ī      | 1      | 1      | 1        | 1  | 1        | 1   |
|         | 70    | 83  | 0/  | 88     | 65     | 80           | 110  | 75  | 83   | 94        | 1      | 1   | 1      | 1      | ĩ      | 1      | î        | 1  | 1        | 1   |
|         | 12    | 03  | 24  | 00     | 104    | 142          | 110  | 126 | 115  | 297<br>01 | 1      | 1   | 1      | 1      | 2      | 1      | 2        | 2  | -<br>-   | 2   |
|         | 106   | 84  | 13  | 81     | 104    | 143          | 110  | 100 | 115  | 01        | 1      | I   | ł      | T      | 2      | Z      | L        | 2  | 2        | 5   |
| 3400 BC | 80    | 84  | 118 | 91     | 93     | 87           | 120  | 100 | 121  | 94        | 4      | 4   | 4      | 4      | 5      | 6      | 6        | 7  | 7        | 7   |
|         | 97    | 90  | 102 | 96     | 141    | 131          | 99   | 70  | 73   | 99        | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | 154   | 179 | 159 | 145    | 128    | 116          | 107  | 114 | 137  | 148       | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | 141   | 154 | 155 | 176    | 138    | 145          | 126  | 111 | 122  | 141       | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | 119   | 144 | 138 | 109    | 81     | 104          | 145  | 136 | 185  | 146       | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
| 2250 80 | 152   | 142 | 115 | 01     | 00     | 105          | 120  | 01  | 107  | 00        | Q      | Q   | 8      | 8      | 8      | 8      | 8        | 8  | 8        | 8   |
| 3330 BC | 100   | 143 | 115 | 91     | 77     | 100          | 100  | 106 | 117  | 100       | 0      | 0   | 0      | 0      | 0      | 0      | 0        | 0  | 0        | 0   |
|         | 102   | 91  | 105 | .97    | 115    | 90           | 123  | 120 | 117  | 100       | 0      | 0   | 0      | 0      | 0      | 0      | 0        | 0  | 0        | 0   |
|         | 99    | 117 | 102 | 121    | 89     | 131          | 95   | 97  | 127  | 94        | 8      | 8   | 8      | 8      | 8      | 8      | 8        | 8  | ð        | 8   |
|         | 109   | 77  | 89  | 93     | 94     | 94           | 95   | 83  | 100  | 109       | 8      | 8   | 8      | 8      | 8      | 8      | 8        | 8  | 8        | 8   |
|         | 112   | 89  | 95  | 96     | 98     | 93           | 112  | 89  | 98   | 74        | 8      | 8   | 8      | 8      | 8      | 8      | 8        | 8  | 8        | 8   |
| 3300 BC | 84    | 97  | 80  | 70     | 59     | 68           | 86   | 84  | 89   | 114       | 8      | 8   | 8      | 8      | 8      | 8      | 8        | 8  | 8        | 8   |
| 3300 DC | 04    | 02  | 96  | 96     | 69     | 60           | 76   | 01  | - Q1 | 02        | Q<br>Q | Q Q | 8      | Q Q    | 8      | 8      | 8        | 8  | å        | ğ   |
|         | 94    | 73  | 70  | 00     | 70     | 70           | 70   | 07  | 01   | 74        | 0      | 0   | 0      | 0      | 0      | 0      | 0        | 0  | ó        | 6   |
|         | 92    | 11  | /8  | 91     | 13     | 72           | /0   | 0/  | 00   | 74        | 9      | 9   | 2      | 9      | 9      | 2      | <i>y</i> | 2  | 2        | 2   |
|         | 79    | 73  | /5  | 33     | 92     | /ð           | 80   | 19  | 91   | 00        | 9      | 9   | 9      | 9      | 9      | 9      | 9        | 9  | у<br>0   | 7   |
|         | 66    | 94  | 72  | 79     | 69     | 67           | 11   | 62  | 72   | 74        | 9      | 9   | 9      | 9      | 9      | 9      | 9        | 9  | 9        | 9   |
| 3250 BC | 76    | 83  | 89  | 77     | 68     | 98           | 92   | 81  | 75   | 65        | 9      | 9   | 9      | 9      | 9      | 9      | 9        | 9  | 9        | 9   |
|         | 65    | 69  | 66  | 59     | 65     | 59           | 50   | 65  | 84   | 65        | 9      | 9   | 9      | 8      | 8      | 8      | 8        | 7  | 7        | 7   |
|         | 80    | 60  | 63  | 72     | 61     | 59           | 56   | 77  | 57   | 60        | 7      | 6   | 6      | 6      | 6      | 6      | 6        | 6  | 6        | 6   |
|         | 53    | 68  | 55  | 48     | 68     | 63           | 58   | 59  | 57   | 68        | 5      | 5   | 5      | 4      | 4      | 4      | 4        | 4  | 4        | 4   |
|         | 50    | 59  | 65  | 71     | 66     | 67           | 72   | 57  | 69   | 66        | 5      | 5   | 5      | 5      | 5      | 5      | 5        | 5  | 5        | 5   |
|         |       |     |     |        |        | ~~~          | • •  |     | 100  | 100       | -      |     | -      | -      | -      | _      | ~        |    |          | ~   |
| 3200 BC | 95    | 80  | 71  | 60     | 66     | 68           | 80   | 83  | 109  | 100       | 5      | 5   | 2      | 5      | 3      | 5      | 2        | 4  | 4        | 5   |
|         | 92    | 85  | 69  | 94     | 85     | 76           | 84   | 83  | 90   | 95        | 3      | 3   | 3      | 3      | 3      | 3      | 3        | 3  | 3        | 3   |
|         | 92    | 115 | 80  | 104    | 88     | 87           | 71   | 88  | 90   | 101       | 3      | 3   | 3      | 3      | 3      | 3      | 3        | 3  | 3        | 3   |
|         | 123   | 81  | 73  | 68     | 90     | 100          | 110  | 91  | 112  | 73        | 3      | 3   | 3      | 3      | 3      | 3      | 3        | 3  | 3        | 3   |
|         | 82    | 93  | 95  | 70     | 72     | 81           | 84   | 64  | 79   | 66        | 3      | 3   | 3      | 3      | 3      | 3      | 3        | 3  | 3        | 3   |
| 3150 BC | 77    | 75  | 59  | 68     | 91     | 76           | 86   | 71  | 64   | 86        | 3      | 3   | 3      | 3      | 3      | 3      | 3        | 3  | 3        | 4   |
| 5100 20 | 95    | 106 | 90  | 76     | 86     | 105          | 102  | 96  | 83   | 94        | 4      | 4   | 4      | 4      | 4      | 4      | 4        | 4  | 4        | 4   |
|         | 87    | 104 | 105 | 08     | 07     | 102          | 116  | 88  | 72   | 72        | 4      | 4   | 4      | 4      | 4      | 1      | 4        | 4  | 4        | 4   |
|         | 07    | 104 | 105 | 110    | 101    | 104          | 07   | 07  | 176  | 96        |        |     | т<br>Л | т<br>Л | т<br>Л | т<br>Л | 1        | 1  | 4        | 4   |
|         | 90    | 105 | 123 | 110    | 121    | 104          | 100  | 120 | 120  | 00        | 4      | 4   | 4      | 4      | 4      | 4      | 14<br>A  | 4  | -+<br>-/ | - 7 |
|         | 100   | 103 | 111 | 91     | 83     | 76           | 102  | 138 | 121  | 84        | 4      | 4   | 4      | 4      | 4      | 4      | 4        | 4  | 4        | 4   |
| 3100 BC | 128   | 136 | 118 | 117    | 132    | 118          | 107  | 78  | 127  | 134       | 4      | 4   | 4      | 3      | 3      | 4      | 4        | 4  | 4        | 4   |
|         | 133   | 117 | 129 | 120    | 141    | 93           | 128  | 135 | 131  | 119       | 4      | 4   | 4      | 4      | 4      | 4      | 4        | 4  | 5        | 5   |
|         | 127   | 111 | 80  | 100    | 92     | 108          | 145  | 183 | 134  | 119       | 5      | 5   | 5      | 5      | 5      | 5      | 5        | 5  | 5        | 4   |
|         | 156   | 174 | 175 | 119    | 146    | 136          | 97   | 146 | 146  | 112       | 4      | 4   | 4      | 4      | 4      | 5      | 5        | 5  | 5        | 5   |
|         | 147   | 180 | 125 | 149    | 130    | 149          | 176  | 119 | 113  | 90        | 5      | 6   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | * # ^ |     | 10- |        |        | 1 1 4 4      | 101  | 100 | 1/0  | 175       | -      | ~   | ~      | -      | -      | -      | ~        | -  | -        | ~   |
| 3050 BC | 150   | 114 | 105 | 112    | 111    | 113          | 131  | 130 | 108  | 167       | 7      | /   | /      | /      | 1      | 1      | 1        | /  | /        |     |
|         | 111   | 136 | 189 | 159    | 119    | 133          | 131  | 171 | 163  | 129       | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | 179   | 136 | 115 | 114    | 153    | 147          | 138  | 135 | 159  | 149       | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | 157   | 142 | 98  | 162    | 137    | 132          | 137  | 142 | 161  | 119       | 7      | 7   | 7      | 7      | 7      | 7      | 7        | 7  | 7        | 7   |
|         | 124   | 175 | 145 | 176    | 147    | 123          | 141  | 121 | 175  | 116       | 6      | 6   | 6      | 6      | 6      | 6      | 6        | 6  | 6        | 6   |

Table 3: Isle of Wight tree-ring chronology, 3463-2694 BC; total number of samples is 20.

.

| 3000 BC | 135 | 158 | 143 | 125 | 145 | 116 | 126 | 102 | 72  | 107 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|
|         | 133 | 162 | 129 | 131 | 126 | 107 | 92  | 95  | 126 | 135 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 133 | 102 | 107 | 122 | 82  | 113 | 89  | 96  | 116 | 116 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 109 | 140 | 141 | 111 | 111 | 72  | 87  | 103 | 123 | 106 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 116 | 135 | 95  | 103 | 90  | 92  | 109 | 103 | 92  | 98  | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 2950 BC | 111 | 88  | 79  | 93  | 99  | 124 | 97  | 98  | 98  | 86  | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 |
|         | 89  | 94  | 100 | 104 | 133 | 134 | 133 | 95  | 90  | 75  | 7 | 7 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 80  | 116 | 94  | 136 | 109 | 101 | 101 | 101 | 90  | 86  | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
|         | 112 | 88  | 95  | 114 | 101 | 91  | 103 | 117 | 103 | 114 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
|         | 117 | 122 | 106 | 135 | 135 | 116 | 99  | 124 | 123 | 126 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 2900 BC | 110 | 138 | 89  | 82  | 117 | 111 | 106 | 116 | 105 | 98  | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
|         | 147 | 158 | 121 | 127 | 104 | 120 | 148 | 121 | 145 | 126 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 |
|         | 110 | 113 | 127 | 127 | 115 | 127 | 108 | 153 | 117 | 148 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
|         | 145 | 119 | 145 | 145 | 141 | 133 | 88  | 119 | 98  | 105 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
|         | 118 | 134 | 158 | 182 | 111 | 137 | 93  | 93  | 121 | 104 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 2850 BC | 96  | 109 | 117 | 120 | 108 | 112 | 116 | 120 | 92  | 94  | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
|         | 146 | 137 | 103 | 98  | 109 | 97  | 109 | 78  | 99  | 95  | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
|         | 88  | 100 | 73  | 102 | 80  | 74  | 94  | 108 | 80  | 98  | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
|         | 90  | 90  | 88  | 93  | 111 | 86  | 95  | 101 | 93  | 75  | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 78  | 87  | 101 | 78  | 87  | 95  | 83  | 99  | 69  | 89  | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 2800 BC | 71  | 91  | 61  | 75  | 94  | 80  | 73  | 60  | 83  | 77  | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 74  | 78  | 87  | 63  | 100 | 72  | 69  | 82  | 89  | 73  | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
|         | 100 | 64  | 94  | 67  | 97  | 92  | 105 | 97  | 108 | 89  | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 |
|         | 82  | 70  | 84  | 74  | 93  | 84  | 77  | 100 | 73  | 81  | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
|         | 94  | 74  | 91  | 83  | 89  | 96  | 94  | 92  | 83  | 52  | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 2750 BC | 59  | 84  | 62  | 71  | 73  | 67  | 86  | 59  | 86  | 71  | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
|         | 78  | 65  | 77  | 71  | 63  | 76  | 63  | 75  | 73  | 78  | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
|         | 69  | 69  | 109 | 74  | 95  | 108 | 78  | 87  | 82  | 94  | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|         | 89  | 74  | 88  | 95  | 99  | 86  | 78  | 75  | 73  | 88  | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
|         | 87  | 143 | 99  | 154 | 88  | 117 | 92  | 64  | 60  | 45  | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 2700 BC | 70  | 48  | 33  | 65  | 41  | 51  | 47  |     |     |     | 3 | 2 | 2 | 1 | 1 | 1 | 1 |   |   |   |

.

Table 4: Matching with other prehistoric chronologies. Details of the chronologies are given in the Appendix.

| chronology                             | <u>t</u> value |
|----------------------------------------|----------------|
| Colwick Hall 1, Notts                  | 5.2            |
| Croston 1, Lancs                       | 4.3            |
| East Anglia                            | 6.8            |
| Eskham Farm, Lancs                     | 4.0            |
| Hereford and Worcester palaeochannel   | 6.0            |
| Northern Ireland                       | 5.0            |
| Woolaston submerged forest 2/3, Gloucs | 7.8            |
|                                        |                |

Table 5: t-value matrix for the undated 3 timber master sequence.

x

|    | 16 | 21   | 1835 |
|----|----|------|------|
| 16 | *  | 3.8  | 7.3  |
|    | 21 | *    | 4.3  |
|    |    | 1835 | *    |

Table 6: Undated master sequence of 268 years; rings 23-43 are dated by radiocarbon to 367-3360 Cal BC (GU-5299, 4730±60 BP).

| <u>year</u> |     |     |     | ring v | vidths     | 6.0.0 | lmm) |     |     |     |   |   |   | nun | ıber | of sa | mpl | es |   |   |
|-------------|-----|-----|-----|--------|------------|-------|------|-----|-----|-----|---|---|---|-----|------|-------|-----|----|---|---|
| 1           | 197 | 94  | 168 | 166    | 125        | 152   | 120  | 159 | 190 | 131 | 1 | 1 | 1 | 1   | 1    | 1     | 1   | 1  | 1 | 2 |
|             | 198 | 197 | 162 | 91     | 115        | 107   | 124  | 95  | 137 | 86  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 121 | 160 | 147 | 143    | 103        | 128   | 124  | 111 | 148 | 104 | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 112 | 135 | 121 | 164    | 124        | 149   | 105  | 145 | 186 | 87  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 127 | 119 | 67  | 72     | 66         | 101   | 57   | 83  | 65  | 77  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
| 51          | 73  | 87  | 168 | 166    | 146        | 112   | 156  | 165 | 137 | 125 | 2 | 2 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 150 | 153 | 106 | 75     | 103        | 117   | 122  | 140 | 156 | 109 | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 118 | 70  | 74  | 88     | 91         | 91    | 113  | 81  | 88  | 99  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 79  | 73  | 96  | 118    | 102        | 124   | 102  | 89  | 60  | 63  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 63  | 70  | 92  | 94     | 87         | 91    | 69   | 66  | 77  | 64  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
| 101         | 101 | 110 | 89  | 76     | 78         | 84    | 95   | 74  | 53  | 96  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 77  | 70  | 88  | 88     | 102        | 80    | 93   | 98  | 102 | 124 | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 107 | 79  | 111 | 97     | 119        | 105   | 95   | 100 | 82  | 96  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 140 | 111 | 119 | 87     | 74         | 99    | 111  | 75  | 53  | 75  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 91  | 102 | 115 | 90     | 119        | 91    | 83   | 82  | 94  | 77  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
| 151         | 85  | 110 | 127 | 84     | <b>7</b> 6 | 68    | 96   | 90  | 131 | 87  | 3 | 3 | 3 | 3   | 3    | 3     | 3   | 3  | 3 | 3 |
|             | 86  | 66  | 58  | 63     | 67         | 84    | 70   | 94  | 88  | 66  | 3 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 82  | 101 | 93  | 66     | 83         | 84    | 85   | 90  | 78  | 85  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 79  | 61  | 67  | 69     | 53         | 76    | 69   | 79  | 80  | 69  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 100 | 88  | 74  | 88     | 66         | 78    | 80   | 66  | 82  | 63  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
| 201         | 69  | 56  | 68  | 56     | 79         | 72    | 84   | 77  | 64  | 78  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 82  | 94  | 71  | 71     | 69         | 73    | 80   | 88  | 84  | 92  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 90  | 66  | 78  | 91     | 82         | 95    | 63   | 77  | 61  | 54  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 60  | 60  | 67  | 64     | 75         | 65    | 69   | 60  | 73  | 64  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 60  | 59  | 58  | 50     | 51         | 52    | 46   | 53  | 42  | 45  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
| 251         | 61  | 59  | 59  | 44     | 47         | 43    | 47   | 43  | 47  | 48  | 2 | 2 | 2 | 2   | 2    | 2     | 2   | 2  | 2 | 2 |
|             | 44  | 56  | 62  | 52     | 45         | 43    | 39   | 51  |     |     | 1 | 1 | 1 | 1   | 1    | 1     | 1   | 1  |   |   |

| timber                       | rings sampled | radiocarbon<br>age (BP) | radiocarbon sample no. | 20 calibrated date range (Cal BC) | comment                                                            |
|------------------------------|---------------|-------------------------|------------------------|-----------------------------------|--------------------------------------------------------------------|
| 5                            | _             | 2270±50                 | GU-5253                | 400-200                           |                                                                    |
| 20                           | 29-41         | 4620±60                 | GU-5300                | 3610-3180                         | rings tree-ring dated to 3365-3353 BC                              |
| 21                           | 23-43         | 4730±60                 | GU-5298                | 3673-3360                         | also rings 23-43 of<br>undated 268-year<br>master curve            |
| 28                           | 44-62         | 4100±50                 | GU-5298                | 2881-2497                         |                                                                    |
| 182                          | all           | 3528±37                 | UB-3271                | 1970-1749                         |                                                                    |
| 263                          | all           | 3640±38                 | UB-3272                | 2137-1908                         |                                                                    |
| 603                          | all           | 3681±38                 | UB-3274                | 2195-1962                         |                                                                    |
| 2386<br>(associated<br>with) | -             | 4160±70                 | GU-5341                | 2920-2505                         | determination on<br>piece of <i>Corylus</i><br>from same structure |

.

Table 7: Summary of radiocarbon results.

-

۶. ۲. Table 8: Summary of the tree-ring results. A sapwood estimate of 10-55 rings is used to calculate the felling date ranges in the absence of bark edge (Hillam *et al* 1987). ARW - average ring width; C - centre of tree (pith) present; V - within 5 rings of pith; F - 5-10 rings from pith; "+" - unmeasured rings.

44

| eamsta    | ARW    | nith   | total<br>rings | date span      | sap-<br>wood | comment                   | felled<br>(BC) |
|-----------|--------|--------|----------------|----------------|--------------|---------------------------|----------------|
| site 1526 | /11/11 | Pren   | <u> </u>       | <u>(1)</u> (1) | 11004        | comment                   | ( <b>B</b> C)  |
| 23        | 1.08   | G      | +200           | 3210-3011      | 33           | felled summer?            | 3010           |
| 24        | 0.89   | G      | 282            | 3058-2777      | 26           | felled winter?            | 2777/6         |
| 25        | 0.83   | Ğ      | 213+           | 2910-2698      | -            |                           | 2688+          |
| 26        | 1.15   | Ğ      | 177+           | 3095-2919      | -            |                           | 2909+          |
| 27        | 0.75   | Ğ      | 185+           | 3282-3098      | -            |                           | 3088+          |
| 28        | 1 97   | č      | 138            | -              | -            |                           | 0000           |
| 182       | 0.53   | Ğ      | +83+           | -              | 24           |                           |                |
| 263       | 0.43   | Ğ      | +58            | -              | 56           |                           |                |
| 602       | 1 77   | З<br>Я | 283            | 3059-2777      | 26           | bark edge                 | 2777/6         |
| 603       | 0.62   | ċ      | 317+           | -              | 22           | ourn ougo                 | 211110         |
| 604       | 0.75   | Ğ      | +217           | 2945-2729      |              |                           | 2719+          |
| 605       | 2.46   | Ğ      | 76             |                | -            |                           |                |
| site 2027 | 2.10   | ÷      |                |                |              |                           |                |
| 5         | 1.54   | F      | 91             | -              | 22           |                           |                |
| 13        | 1.55   | G      | 183            | 2882-2700      | 18           |                           | 2699-2663      |
| 14        | 0.92   | G      | 243            | 3463-3221      | -            |                           | 3211+          |
| 15        | 0.68   | G      | 207+           | 3400-3194      | 4            | +57-60 rings to bark edge | 3140-3137      |
| 16        | 1.61   | G      | 109            | -              | -            | 0 0                       |                |
| 17        | 1.31   | С      | 145            | 3028-2938      | -            |                           | 2928+          |
| 18        | 1.08   | G      | 173            | 3406-3234      | 33           | c.4 rings to bark edge    | c.3230         |
| 19        | 0.92   | G      | 178            | 3395-3218      | -            | 0 0                       | 3208+          |
| 20        | 1.44   | F      | 156            | 3393-3238      | -            |                           | 3228+          |
| 21        | 0.91   | F      | 260            | -              | 25           |                           |                |
| 22        | 1.04   | G      | 214            | 3141-2928      | -            |                           | 2918+          |
| 1835      | 0.64   | G      | 235+           | -              | -            |                           |                |
| 2153      | 0.71   | F      | 330            | 3410-3072      | 27           | bark edge?                | 3072/1         |
| 2347      | 1.02   | G      | +100           | -              | -            |                           |                |
| 2368      | 0.59   | G      | 205+           | 3396-3192      | -            | plus at least 36 rings    | 3146+          |
| 2369      | 0.84   | V      | 186            | 3065-2880      | 30           | felled summer?            | 2879           |
| 2382      | 1.56   | G      | 121            | 3350-3230      | -            |                           | 3220+          |
| 2383      | 1.29   | G      | 97             | -              | 41           |                           |                |
| site 2175 |        |        |                |                |              |                           |                |
| 2312      | 0.68   | G      | 164            | 2857-2694      | 35           | bark edge?                | 2694/3?        |
| 2386      | 1,71   | G      | 116            | -              | -            | -                         |                |

Appendix: Details of dated prehistoric tree-ring chronologies from Britain. Those marked with an asterisk were produced in the Bark edgelfast Tree-Ring Laboratory (eg Baillie and Brown 1988; Brown *et al* 1986); the remainder were produced at Sheffield (eg Hillam *et al* 1990), unless stated otherwise.

...

| Region                      | Chronology                          | Date span ( BC) |
|-----------------------------|-------------------------------------|-----------------|
| Cambridgeshire              | Flag Fen/Fengate (Neve 1992)        | 1363-967        |
| Durham                      | Swan Carr*                          | 1155-381        |
| East Anglia                 | East Anglia*                        | 3196-1681       |
| Gloucestershire             | Woolaston submerged forest 2/3      | 2843-2692       |
|                             | Woolaston submerged forest 6/7      | 4096-3869       |
| Gwent                       | Caldicot oak                        | 1131-998        |
|                             | Caldicot ash                        | 1169-990        |
|                             | Goldcliff structural timbark edgers | 518-392         |
|                             | Goldcliff boat fragments            | 1139-1027       |
| Hereford and Worcestershire | palaeochannel                       | 2869-2698       |
| Humbark edgerside           | Bark edgeverley Long Lane           | 4197-3891       |
|                             | Hasholme logboat                    | 699-323         |
|                             | Hasholme bog oaks                   | 1687-1326       |
|                             | Watton Carrs 1                      | 1804-1655       |
| Lancashire                  | Ashton*                             | 4307-4023       |
|                             | Balls Farm*                         | 4433-4165       |
|                             | Croston Moss 1*                     | 3198-1682       |
|                             | Croston Moss 2*                     | 1584-970        |
|                             | Eskham House Farm*                  | 3601-3109       |
|                             | Hill Farm 1*                        | 3807-3494       |
|                             | Hill Farm 2*                        | 3519-3283       |
|                             | Lancs 2*                            | 4989-4569       |
| Lincolnshire                | Fiskerton                           | 505-339         |
| Northern Ireland            | Bark edgelfast long chronology*     | 5289-AD1983     |
| Nottinghamshire             | Colwick Hall 1*                     | 3045-2697       |
|                             | Colwick Hall 2*                     | 2792-2583       |
|                             | Old Loop 1*                         | 4186-3833       |
|                             | Old Loop 2*                         | 4852-4426       |
|                             | Para Trent 1                        | 2563-2258       |
| Somerset                    | Skinners Wood                       | 1162-1003       |
|                             | Stolford submerged forest*          | 4050-3779       |
|                             | Sweet Track                         | 4202-3807       |