Centre for Archaeology Report 43/2001

Tree-Ring Analysis of Timbers from the Church of St Mary Magdalene, Debenham, Suffolk

Dr Martin Bridge

© English Heritage 2001

ISSN 1473-9224

The Centre for Archaeology Reports Series incorporates the former Ancient Monuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back of cover for details).

Centre for Archaeology Report 43/2001

Tree-Ring Analysis of Timbers from the Church of St Mary Magdalene, Debenham, Suffolk

Dr Martin Bridge

Summary

A number of *ex situ* samples from the nave roof were identified on-site during recent repair work. Though the timbers were found to have unusually sensitive tree-ring series (ie their year-to-year variations were higher than average), six of the timbers subsequently dated. Only two timbers exhibited a heartwood-sapwood boundary. If all the dated timbers are considered to be a single group of primary timbers, their felling date range of **AD 1397 - AD 1409** would suggest that the roof was constructed a little earlier than had been suggested on stylistic grounds. A second site chronology consisting of three timbers failed to date, as did some individual series, though all of these showed similar ring characteristics to the dated samples, strongly suggesting that they might have been contemporaneous with the dated timbers.

Keywords

Dendrochronology Standing Building

Author's address

Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, Tel: 020 7679 1540, Email: martin.bridge@ucl.ac.uk

Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in CfA reports are those of the author and are not necessarily those of English Heritage.

TREE-RING ANALYSIS OF TIMBERS FROM THE CHURCH OF ST MARY MAGDALENE, DEBENHAM, SUFFOLK

Introduction

The church of St Mary Magdalene (NGR TM 174632; Fig 1) is a grade I listed building of medieval origin, extensively repaired and renovated in Victorian times. This report is a record of dendrochronological studies carried out at the request of Colin Jeffries (English Heritage) on oak timbers removed from the nave roof during recent repairs in an attempt to give a better understanding of the date of this eight-bay roof. The roof has alternate tie beams and hammerbeams from which spring short, moulded, arch braces (Figs 2 and 3). The principal rafters, purlins, and the ridge piece are also moulded and the cornice is embattled. The roof has been stylistically attributed to the fifteenth century by some. Rackham (pers comm 1998) reports the earlier work of Birkin Haward who points out that the arcades at Debenham bear remarkable similarity to those at Bildeston, and that both are thought to be part of a group of about ten churches identified as being worked on by the architect Hawes of Occold in the AD 1420s, though he himself regards the nave roof as more likely of late fifteenth-century origin.

Methodology

The site was visited in January AD 1999 whilst repairs were being undertaken. A number of timbers had been removed during the work and these were assessed for their potential use in dendrochronological study. Oak timbers with more than 50 rings and traces of sapwood were the main considerations in the initial assessment. Those timbers judged to be potentially useful were sliced with a saw, labelled, and stored for subsequent analysis. Their origin within the roof was identified, where possible, by the contractors on site. The sampling included some slices from ex situ timbers thought possibly to have been later repairs to the roof, these were labelled A-D. The slices were prepared for measuring by sanding using an electric belt-sander with progressively finer grit papers down to 400 grit. Any further preparation necessary, eg where bands of narrow rings occurred, was done manually. Only samples with more than 45-50 rings were measured and used in subsequent analyses as sequences with fewer than this number of Suitable samples had their tree-ring sequences rings rarely give reliable crossmatching. measured to an accuracy of 0.01 mm using a specially constructed system utilizing a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC. The software used in measuring and subsequent analysis was written by Ian Tyers (1999a).

Ring sequences were plotted to allow visual comparisons to be made between sequences on a light table. This activity also acts as a measure of quality control in identifying any errors in the measurements when the samples crossmatch. Statistical comparisons were made using Student's *t*-test (Baillie and Pilcher 1973; Munro 1984). The *t*-values quoted below were derived from the original CROS program (Baillie and Pilcher 1973). Those *t*-values in excess of 3.5 are taken to be indicative of acceptable matching positions provided that they are supported by satisfactory visual matches, and give consistent matching positions.

When crossmatching between samples is found, their ring-width sequences are meaned to form an internal site mean sequence which is then compared with a number of reference chronologies (multi-site chronologies from a region) and dated individual site masters in an attempt to date it.

Individual long series which are not included in the site mean(s) are also compared with the database to see if they can be dated.

The dates thus obtained represent the time of formation of the rings available on each sample. Interpretation of these dates then has to be undertaken to relate these findings to the construction date of the phase under investigation. An important aspect of this interpretation is the estimate of the number of sapwood rings missing. In this instance, the sapwood estimates are based on those proposed for this area by Miles (1997), in which 95% of samples are likely to have from 9 to 41 sapwood rings. Where bark is present on the sample the exact date of felling of the tree used may be determined.

The dates derived for the felling of the trees used in construction do not necessarily relate directly to the date of construction of the building. However, evidence suggests that, except in the re-use of timbers, construction in most historical periods took place within a very few years after felling (Salzman 1952; Hollstein 1965).

Results

All the timbers sampled were oak (*Quercus* spp.). Details of each sample are given in Table 1. The year-to-year variation in ring-width was greater than is often encountered in historic oak timbers (their sequences are said to be 'sensitive'), and the levels of crossmatching within the samples were in most cases quite low, though timbers DBM 07, 12, and 14 crossmatched well (Tables 2 and 3). Individual samples were crossmatched with a range of reference series in order to confirm the internal crossmatching found (Table 4). Whilst the shortest sequence (DBM11) did not match so well with the reference material, it matched well against a combined series made from DBM 04, 05, 06, 09, and 10. Two site chronologies were eventually formed, DEBENHAM1 (comprising samples DBM 04, 05, 06, 09, 10, and 11) and DEBENHAM2 (comprising samples DBM 07, 12, and 14). Both were compared with available reference chronologies from both regional and site chronologies, with the result that DEBENHAM1 was dated to the period AD 1256-1388 (Table 5) and DEBENHAM2 (Figure 6) remains undated. Possible crossmatches in the late fourteenth-century were found both for DEBENHAM2 and some of the other undated individual sample ring-width series, though these were neither strong enough, nor sufficiently consistent to be considered as having been dated. The relative positions of overlap of the sequences in each site chronology are shown in Figures 4 and 5. The data for the two site chronologies are given in Table 6.

Interpretation and Discussion

Many of the undated sequences showed parts of their ring-width patterns that resembled the other sequences, but they did not show consistent crossmatching. All the sequences of the timbers thought to be original to the nave roof showed similar characteristics of sensitivity, and it is thought that they probably all form a single batch. Only five of the sequences gave consistent crossmatches with the reference material, but DBM11 was added to these because of its strong internal crossmatching with a working chronology formed from the five dated sequences. The resulting dated chronology DEBENHAM1 gave very strong matches with a number of reference chronologies, mostly from the East Anglian region, perhaps indicating that the timbers were relatively local, although the individual sequences dated against chronologies

from a wide geographical area. The sensitivity of the data, exemplified by the plot in Figure 6, may result from micro-site peculiarities or management of the trees, and these unusual sudden growth changes render the series less likely to date.

The lack of sapwood and bark edge makes interpretation of the felling date of the timbers used more difficult. If the timbers really are from a single batch, then the combined felling dates from the dated timbers would suggest a felling date range of $AD\ 1397-1409$. This date is rather earlier than had previously been proposed on stylistic grounds, and would suggest that this church roof may not be the work of the architect Hawes. The four timbers DBM A-D were thought possibly to represent later repairs to the roof. Sadly none of these sequences dated and therefore they do not add any further information at present.

Acknowledgements

I would like to thank the contractors, A F Knights Builders of Debenham, for thier assistance on site, and the architect David Whymark for his helpful discussion. Cathy Groves (Sheffield University) kindly checked through the data for this site and her comments were most useful in the preparation of this report.

References

Baillie, M G L, and Pilcher, J R, 1973 A simple crossdating program for tree-ring research, *Tree Ring Bulletin*, 33, 7-14

Bridge, M C, 1987 Dates for buildings, List 21, Vernacular Architect, 18, 54

Bridge, M C, 1999 Tree-ring analysis of timbers from 15 High Street, Great Dunmow, Essex, Anc Mon Lab Rep, 21/99

Bridge, M C, forthcoming Tree-ring analysis of timbers from the Church of St George of England, Toddington, Bedfordshire, Centre for Archaeol Rep

Bridge, M C, 2000 FEB2000, unpublished computer file, the author

Hollstein, E, 1965 Jahrringchronologische von Eichenholzern ohne Walkande *Bonner Jahrb* **165,** 12-27

Howard, R E, Laxton, R R, and Litton, C D, 1998 Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep, 30/98

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring analysis of timbers from the barn and cottage, Abbey Farm, Thetford, Norfolk, Anc Mon Lab Rep, 48/2000

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master chronological sequence for oak, 1158 - 1540 AD, *Medieval Archaeol*, 33, 90-8

Miles, D, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40-56

Munro, M A R, 1984 An improved algorithm for crossdating tree-ring series, *Tree Ring Bulletin*, 44, 17-27

Salzman, LF, 1952 Building in England down to 1540, Oxford

Tyers, I, 1996a Tree-ring analysis of the bellframe at the church of St Mary Magdalene, Twyning, Gloucestershire, Anc Mon Lab Rep, 29/96

Tyers, I, 1996b The tree-ring analysis of five bellframes from the county of Essex, Anc Mon Lab Rep, 12/96

Tyers, I, 1998 Tree-ring analysis of Cann Hall, Clacton, Essex, Anc Mon Lab Rep, 25/98

Tyers, I, 1999a Dendro for Windows Program Guide 2nd edn, ARCUS Rep, 500

Tyers, I, 1999b Tree-ring analysis of timbers from Marriot's Warehouse, King's Lynn, Norfolk, Anc Mon Lab Rep, 11/99

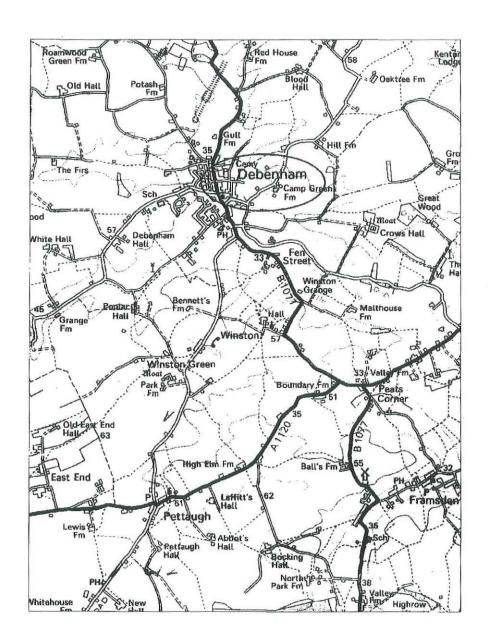


Figure 1: Map to show the general location of Church of St Mary Magdalene, Debenham,

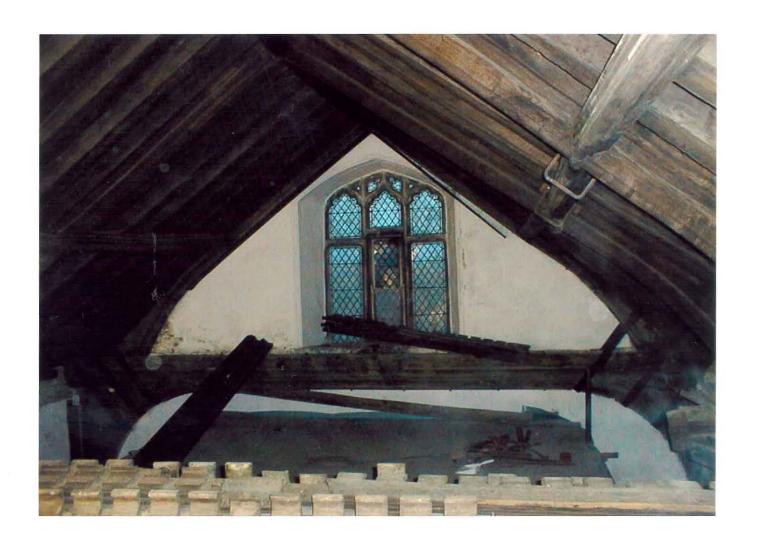


Figure 2: View of the nave roof showing moulded purlins and principal rafter and embattled tie beam (photo A F Knight Builders of Debenham)

Figure 3: View of the nave roof showing arch brace and hammerbeam under repair (photo A F Knight Builders of Debenham)

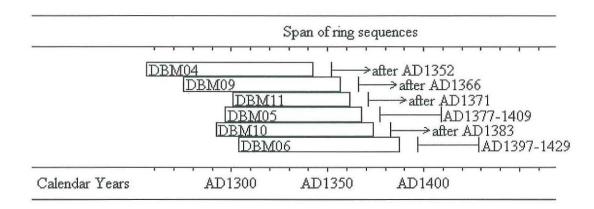


Figure 4: Bar diagram showing the relative positions of overlap of the dated samples in site chronology DEBENHAM1, along with the interpreted dates of felling.

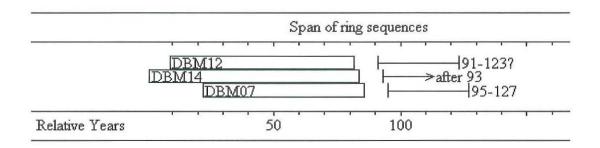


Figure 5: Bar diagram showing the relative positions of overlap of the samples included in site chronology DEBENHAM2

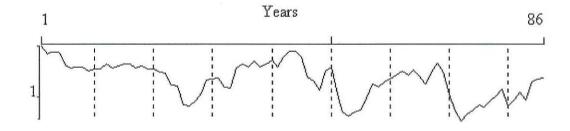


Figure 6: Plot of DEBENHAM2, showing the 'sensitive' nature of the series with its pronounced changes in ring width

Table 1: Oak (Quercus spp.) timbers sampled from St Mary Magdalene Church, Debenham, Suffolk. h/s = heartwood-sapwood boundary

Sample number	Origin of slice	Mark on timber years Growth rate (mm yr-1)		Sapwood details	Date of sequence AD	Felling date of timber AD			
DBM01	Rafter		61	2.57	-	undated	unknown		
DBM02	?Rafter		27	unmeasured	-	undated	unknown		
DBM03	?Rafter		>40	unmeasured	-	undated	unknown		
DBM04	Wall plate		88	1.73	-	1256 - 1343	after 1352		
DBM05	ashlar piece		72	1.52	1.52 h/s		1377 - 1409		
DBM06	?Rafter		85	1.60	h/s	1304 - 88	1397 - 1429		
DBM07	Ashlar piece		65	2.09	h/s	undated	unknown		
DBM08	Ashlar piece		95	1.61	-	undated	unknown		
DBM09	Ashlar piece		83	1.86	-	1275 - 1357	after 1366		
DBM10	Ashlar piece	e 83		1.24	-	1292 - 1374	after 1383		
DBM11	Cornice piece		62	1.92	-	1301 - 62	after 1371		
DBM12	Ashlar piece		74	1.73	?h/s	undated	unknown		
DBM13	Ashlar piece		>40	unmeasured	-	undated	unknown		
DBM14	?Rafter		84	1.75	-	undated	unknown		
DBM15	uncertain		77	2.06	1-1	undated	unknown		
DBM16	uncertain		>40	unmeasured	-	undated	unknown		
DBM17	uncertain		60	2.00	-	undated	unknown		

Table 1 continued:

Sample number	Origin of slice	Mark on timber	Total no of years	Average growth rate (mm yr ⁻¹)	Sapwood details	Date of sequence AD	Felling date of timber AD
DBM'A'	Nailed on repair to wall plate		60	2.11	17 sap + bark	undated	unknown
DBM'B'	Repair		>40	unmeasured	-	undated	unknown
DBM'C'	Repair		94	1.43	h/s	undated	unknown
DBM'D'	Repair		>40	unmeasured	¥	undated	unknown

Table 2: Crossmatching between the dated timbers in the site chronology DEBENHAM1. (-) represents *t*-value less than 3.0

	<i>t</i> -value													
SAMPLE	DBM05	DBM06	DBM09	DBM10	DBM11									
DBM04	-	4.7	:=:	-	3.3									
DBM05		3.3	3.9	3.6	3.1									
DBM06			3.9	4.9	4.3									
DBM09				-	-									
DBM10					-									

Table 3: Crossmatching between the dated timbers in the site chronology DEBENHAM2. (-) represents *t*-value less than 3.0

	<i>t</i> -value									
SAMPLE	DBM12	DBM14								
DBM07	7.9	8.4								
DBM12		6.9								

Table 4: Independent dating of the elements of site chronology DEBENHAM1. (-) represents value less than 3.0

t-value and overlap (yrs)												
Series	DBM04 AD1256 -	DBM05 AD 1297 -	DBM06 AD 1304 - 88	DBM09 AD 1275 -	DBM10 AD 1292 -	DBM11 AD 1301 - 62						
	1343	1368		1357	1374							
Feb2000 (Bridge unpubl)	4.7 (88)	5.3 (72)	4.6 (85)	5.0 (83)	7.0 (83)	3.5 (62)						
London1175 (Tyers pers comm)	4.3 (88)	4.5 (72)	3.5 (85)	4.6 (83)	5.1 (83)	-						
East Midlands (Laxton and Litton 1988)	4.8 (88)	-	4.0 (85)	4.0 (83)	3.9 (83)	-						
Hants97 (Miles pers comm)	4.6 (88)	3.6 (72)	3.7 (85)	4.5 (83)	4.9 (83)	-						
Oxon93 (Miles pers comm)	5.2 (88)	3.9 (72)	4.5 (85)	3.4 (83)	3.9 (83)	-						
Kent (Laxton and Litton 1989)	7	4.6 (72)	6.4 (85)	5.5 (83)	5.0 (83)	-						
Thetford, Norfolk (Howard et al 2000)	5.1 (88)	3.1 (72)	5.8 (85)	3.3 (83)	3.9 (83)	3.9 (62)						
Toddington, Bedfordshire (Bridge forthcoming)	6.0 (88)	3.6 (72)	4.6 (85)	-	6.4 (83)	5.7 (62)						
Twyning, Gloucestershire (1996a)	5.4 (88)	5.3 (72)	3.5 (85)	3.3 (83)	5.8 (83)	4.3 (62)						

 Table 5: Dating of the oak site chronology DEBENHAM1

	DEBENHAM1 AD 1256 - 1388						
Dated reference or site master chronology	<i>t</i> -value	Overlap (yrs)					
Feb2000 (Bridge unpubl)	6.4	133					
Hants97 (Miles pers comm)	5.6	133					
London1175 (Tyers pers comm)	5.5	133					
Kent88 (Laxton and Litton 1989)	5.4	133					
Thetford, Norfolk (Howard et al 2000)	7.2	133					
High Halden, Kent (Bridge 1987)	6.5	90					
Twyning, Gloucestershire (Tyers 1996a)	6.1	133					
Chicksands, Bedfordshire (Howard et al 1998)	5.9	133					
Dunmow, Essex (Bridge 1999)	5.6	62					
Cann Hall, Essex (Tyers 1998)	5.2	88					
Marriots, Norfolk (Tyers 1999b)	4.9	79					
Bletchley, Buckinghamshire (Bridge 1987)	4.8	83					
Woodham Walter, Essex (Tyers 1996b)	4.6	97					
Toddington, Bedfordshire (Bridge forthcoming)	4.5	133					

 Table 6: Ring-width data for the site chronologies DEBENHAM1 and DEBENHAM2

Year	ring widths (0.01mm)							no of samples														
DEBENHAM1																						
AD 1256	112	311	206	159	215	169	221	198	193	165		1	1	1	1	1	1	1	1	1	1	
	148	145	162	169	137	162	153	209	81	139		1	1	1	1	1	1	1	1	1	2	
	171	151	119	130	141	140	255	160	171	193		2	2	2	2	2	2	2	2	2	2	
	231	156	139	267	320	241	266	194	220	175		2	2	2	2	2	2	3	3	3	3	
	229	133	148	149	176	176	163	145	173	171		3	4	4	4	4	5	5	5	6	6	
AD 1306	183	230	229	214	183	146	201	212	265	266		6	6	6	6	6	6	6	6	6	6	
	223	167	117	166	201	184	160	161	158	133		6	6	6	6	6	6	6	6	6	6	
	92	135	162	216	148	108	119	121	149	195		6	6	6	6	6	6	6	6	6	6	
	144	155	138	164	147	133	148	136	116	135		6	6	6	6	6	6	6	6	5	5	
	132	127	115	94	127	174	138	170	158	104		5	5	5	5	5	5	5	5	5	5	
AD 1356	116	140	127	109	135	127	153	220	178	130		5	5	4	4	4	4	4	3	3	3	
	111	116	116	184	196	157	183	148	147	165		3	3	3	2	2	2	2	2	2	1	
	195	170	187	94	135	244	255	225	92	166		1	1	1	1	1	1	1	1	1	1	
	199	251	255									1	1	1								
DEBENHAM2																						
1	482	373	409	394	272	245	251	253	221	236		1	1	1	1	1	1	1	1	2	2	
										235				2								
										176				3								
										315				3								
										254				3								
51	110	64	58	64	68	98	151	137	161	177		3	3	3	3	3	3	3	3	3	3	
		221								110				3								
	66					74		106						3								
		119		158										2							7	