Centre for Archaeology Report 3/2005

The Iron Age and Romano-British mammal and fish remains from Trevelgue Head promontory fort, Newquay, Cornwall, excavated in 1939 by C K Croft Andrew

Andy Hammon

© English Heritage 2005

ISSN 1473-9224

The Centre for Archaeology Report Series incorporates the former Ancient Monuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back cover for details).

The Iron Age and Romano-British mammal and fish remains from Trevelgue Head promontory fort, Newquay, Cornwall, excavated in 1939 by C K Croft Andrew

Andy Hammon

Summary

The 1939 Croft Andrew excavations at the Trevelgue Head, Newquay, Cornwall (NGR SW 825 630) produced a small animal bone assemblage. Because of the paucity of animal bone assemblages from Cornwall the Trevelgue Head assemblage provided an important opportunity to develop and advance our understanding of the agrarian economy and husbandry practices in this region during the Iron Age and Romano-British periods. Archaeology Commissions funding of the post-excavation analysis has made this possible. It was possible to identify 490 fragments to species or taxonomic group. The major of the assemblage derived from Iron Age deposits. The assemblage was dominated by the major domesticates, but wild species were also present in small numbers. Domestic animals appear to have been exploited for a variety of products, although may not have been bred at the site directly. The presence of deer (and pigs) indicates the exploitation of woodland. Inter-site comparison hints at two breeds of sheep being present in the locality.

Keywords Animal bone Iron Age Roman

Author's address

English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth, PO4 9LD

Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in CfA reports are those of the author and are not necessarily those of English Heritage.

The Iron Age mammal and fish remains from Trevelgue Head promontory fort, Newquay, Cornwall, excavated in 1939 by C K Croft Andrew

Introduction

This animal bone report forms part of the post-excavation analysis being carried out on the 1939 Croft Andrew excavation archive from Trevelgue Head, Newquay, Cornwall (NGR SW 825 630). Trevelgue Head is a multi-vallate cliff castle/promontory fort and is possibly the most 'famous and impressive' example in Cornwall (Nowakowski 2003: 9) (Figure 1). Cornwall Archaeological Unit has undertaken the task of analysing the archive and preparing a publication monograph, with financial support from the Archaeological Commissions Programme.

Phasing

No material was recovered from Phases 1-5 (Mesolithic-Early Iron Age). All the vertebrate remains considered in this report derive from three phases (Phases 6-8). To summarise Nowakowski (2003: 16-20), the main characteristics of Phases 6-8 consist of the following:

Phase 6 Later Early Iron Age (6th-5th centuries BC): Later EIA activity is slight, consisting of a hollow, [290] and [291], appears in both Trenches 61 and 62, respectively. The earliest phase of the rampart, bank [286], also dates to this period in Trench 61. Up-slope of House 1, in Trench 63, features may form a later EIA structure: a gully [277], plus postholes [274] and [279].

Phase 7 Middle-Late Iron Age (5th century BC-1st century AD): A series of structures and activity areas from Phase 7 form the largest component of the excavations. Various middens, dating to 5th-4th centuries BC, were identified from Trenches 61, 62, 71 and 72: [251], [253], [255], [256] and [294]. A structure [311], dating to 4th-1st century BC, was discovered in Trenches 71 and 72. Trench 62 produced a range of industrial features. A series of pits and postholes were cut into the bedrock: cutting [238], small furnace [208], central kiln [249], double furnace [245], slate-lined furnace [239], shallow furnace [246], furnace [248], postholes [204], [205] and [206], and rock-cut gullies [214] and [210]. A round house, House 1, is 'unparalleled' in the south-west because of its longevity of use, primarily dating to the 4th-1st centuries BC. Broadly dated (3rd-1st century BC) rampart [298], ditch [264] and counterscarp bank [299] from Trench 71 also date to Phase 7.

Phase 8 Romano-British (1st-4th centuries AD): An intrusive structure [172] is located on the eastern edge of House 1. The date of this structure remains tentative.

Recovery

All the fragments considered in this report derive from hand-collection. Samples were collected during the original Croft Andrew excavations and a small number were processed recently. Sample residues only produced small amounts unidentifiable fragments. Heavy residues <2 mm were scanned with a low power binocular microscope at x12 magnification (see Baker 2002). Hand-retrieval often leads to the preferential recovery of the larger skeletal elements from the larger mammal species. Other large mammal elements and all fragments of birds, fishes

and small mammals, etc are under-represented. In addition, hand-retrieval often leads to immature specimens also being lost. The Trevelgue Head skeletal representation and mortality profiles would suggest that this is the case (see below).

Methods

The Trevelgue Head assemblage was recorded using the 'York system' (Harland *et al.* 2003), a custom built relational database utilising MS Access 2000 or XP. In this database, fragmentation is recorded using a modified version of Dobney & Rielly's (1988) diagnostic zones. Combined with a virtually identical suite of anatomical elements, this makes the 'York system' directly comparable with that of Serjeantson (1996). The latter has been used to record other recently analysed assemblages from Cornwall, for example Atlantic Road, Newquay (Ingrem 2000).

Mandibular tooth eruption and wear was recorded using the criteria of Grant (1982) for cattle and pig, and Payne (1973 & 1987) for sheep and goats. Cattle post-cranial epiphyseal fusion ages quoted in Figure 2 are based on Reitz & Wing's (1999) summary of Schmid (1972) and Silver (1969).

Measurements are listed in the Appendix. The majority of measurements follow von den Driesch's (1976) definitions. All pig measurements follow the definitions of Payne & Bull (1988). Humerus 'BT', 'HT', 'HTC' and tibia 'Bd' measurements were taken for all species according to Payne & Bull (1988). Cattle, sheep/goat and deer metapodials were measured using the criteria described by Davis (1992).

Taxonomic identification

All the 'countable' fragments were identified using the reference collection held at the Centre for Archaeology (English Heritage, Portsmouth).

The differentiation of sheep (*Ovis aries*) and goat (*Capra hircus*) was attempted on the following elements: deciduous lower premolars (dP_3 and dP_4); horn-core; humerus; metacarpal; tibia; astragalus; calcaneum; metatarsal; phalanges 1-3. The morphological criteria defined by Boessneck (1969) and Prummel & Frisch (1986) were used for all elements except the teeth (Payne 1985) and the tibia (Kratochvil 1969).

Pig (*Sus domesticus*) and boar (*S.scrofa*) can be differentiated using biometrical separation (Payne & Bull 1988), however where no measurements could be taken physical size was used as an indication.

Species distinction of horse (*Equus caballus*) and donkey (*E.asinus*) was attempted on the maxillary and mandibular cheek teeth (if they could be placed, i.e. were insitu), using the morphological criteria outlined by Baxter (1999), Davis (1980) and Eisenmann (1981).

Dog (*Canis familiaris*) and red fox (*Vulpes vulpes*) was separated using physical size in the first instance. If physical size failed to distinguish fragments then any distinct morphological features present were used (no standard presently exists).

Red deer (*Cervus elaphus*) and fallow deer (*Dama dama*) remains were separated using the criteria outlined in Lister (1996) for all teeth and other body parts.

Rabbit (*Oryctolagus cuniculus*) and hare (*Lepus* sp.) remains were separated using the criteria outlined in Callou (1997) for all teeth and other body parts.

Taphonomy

The Trevelgue Head assemblage was generally well-preserved and probably reflects the shell-rich sandy burial environment. The presence of marine shell in the burial environment would help create a more neutral pH conducive to bone preservation (see Lyman 1999: 421-422). Table 1 outlines surface preservation (cortical integrity) by chronological period and Table 2 by excavation area. To summarise,

Excellent	42	36.2%
Good	41	36.0%
Fair	2	23.5%
Poor	7	4.3%

A fairly large proportion of the Trevelgue Head animal bones were semi-complete. This is because a large number of isolated teeth are present within the assemblage (see below), which generally survive intact. Table 3 outlines fragmentation (expressed as a percentage of complete anatomical elements) by chronological phase and Table 4 by excavation area. To summarise,

0 – 20%	51	13.0%
21 – 40%	88	22.4%
41 – 60%	58	14.8%
61 – 80% ·	36	9.2%
81 – 100%	159	40.6%

Table 5 outlines surface modification by chronological period and Table 6 by excavation area (isolated teeth have been excluded from the calculations, so as not to bias the results). To summarise,

Gnawed	50	16.8%
Root etched	6	2.0%
Unmodified	242	81.2%

The level of gnawing is fairly low; it is not unusual for one-third of later prehistoric – Romano-British animal bone assemblages to be gnawed (personal observation). This would suggest that the majority of bones derive from their original anthropogenic place of deposition, rather than from secondary deposition caused by scavenging animals. In all likelihood, dogs are responsible for the majority of the gnawing however pigs also readily gnaw bone (Greenfield 1988). Pigs leave superficially similar marks to dogs and their impact is often under-estimated.

Assemblage overview

The 1939 Croft Andrew excavation and subsequent surface finds at Trevelgue Head have produced a vertebrate assemblage consisting of approximately 932 fragments, weighing 12.9 kg.

This report is solely concerned with stratified material (see below). Additional material, deriving from unstratified deposits and unprovenanced surface scatters, has been discounted. It was scanned to determine whether or not it differed in composition to the stratified material, which it did not.

In total 490 fragments have been considered. Three hundred and ninety two fragments were identified to species, genus or family. A further 97 fragments consisted of indeterminate large and medium mammal bones, plus one indeterminate bird bone (Table 7). To summarise, by excavation area the assemblage is divided as follows:

Trench 61	319	65.1%
Trench 62	139	28.4%
House 1	23	4.7%
Other (see below)	9	1.8%

And, by chronological period:

Phase 6	8	1.6%
Phase 7	457	93.3%
Phase 7/8	14	2.9%
Phase 8	11	2.2%

Material deriving from Trenches 61 and 62 dating to Phase 7 (M-LIA) therefore constitutes the bulk of the assemblage. Eighteen deposits with 10 or more fragments account for 70.2% of the Phase 7 assemblage. From Trench 61 these deposits are 90257B, 90313, 90320, 90325, 90327, 90330, 90383, 90386, 90435, 90448, 90449, 90452 and 90454; from Trench 62 90220, 90237, 90252 and 90434; from House 1 90457. The vast majority of bone fragments therefore derive from the various midden deposits.

Area and phase overview

Table 7 summarises identified fragments by species, excavation area and chronological period.

Trench 61

Table 8 summarises identified species by chronological period and deposit type for Trench 61.

Phase 6

Identifiable fragments derived from bank and midden deposits. The seven identifiable fragments were: three cattle, two sheep/goat and two lagomorphs. All the specimens belonged to skeletally mature animals. One cattle lumbar vertebra had been split axially with a heavy-bladed implement.

Phase 7

Identifiable fragments derived from demolition, layer, midden, mussel bed and pit deposits; 64.4% of these fragments came from middens and a further 10.6% came from demolition deposits. Two hundred and forty four fragments were identified: 118 cattle, 11 sheep, four goats, 50 sheep/goat, 36 pigs, two horse, five equids, eight red deer, one red fox, six rabbits, two lagomorphs and one stingray. For cattle, sheep/goat and pig, all parts of the skeleton were represented. Equid remains mainly consisted of isolated maxillary and mandibular teeth. Red deer were represented by lower and upper limb elements from both the fore- and hind-limb. The red fox was represented by a complete femur and the stingray by a single tailspine. Both deciduous and permanent dentition was present. All teeth were generally in wear and the vast majority of all post-cranial specimens were skeletally mature; most animals were sub- or adult. Small numbers of cattle, sheep/goat and pig bones demonstrated butchery evidence, chop or cut marks. The other species present displayed no butchery evidence.

Phase 7/8

Identifiable fragments derived from layer and subsoil deposits. Eleven fragments were identified: six cattle, three sheep/goat, one rabbit and one lagomorph. With the exception of the lagomorph specimen all were skeletally mature. A cattle tibia demonstrated saw marks transversely across the distal shaft.

Phase 8

Phase 8 consisted of topsoil. Five fragments were identified: one cattle, three sheep/goat and one pig. With the exception of a pig tibia, all specimens were skeletally mature.

Trench 62

Table 9 summarises identified species by chronological period and deposit type for Trench 62.

Phase 7

Identifiable fragments derived from floor, furnace, hearth, midden, mussel bed, rock outcrop and pit deposits; 53.2% of these fragments came from middens and a further 21.6% came from hearth deposits. Ninety nine fragments were identified: 48 cattle, 27 sheep/goat, nine pigs, nine equids, three red deer, one red/fallow deer and two rabbits. For cattle and sheep/goat, all parts of the skeleton were represented. Pig and equid remains mainly consisted of isolated maxillary and mandibular teeth. Deer was solely represented by antler fragments. Teeth were almost exclusively represented by permanent dentition that was in wear. All fragments from the post-cranial skeleton were skeletally mature. Small numbers of all the domestic species demonstrated chop and cut marks. Additionally, a few cattle long- and canon-bones were split axially. Two of the three deer antler fragments were also sawn transversely.

House 1

This includes the following sub-areas: Trenches 66, 67, 68, 612, 614 and 615. Table 10 summarises identified species by chronological period and deposit type for House 1.

Phase 7

Identifiable fragments derived from infill, layer, posthole and wall deposits; 55.0% of these fragments came from layers. Twenty-three fragments were identified: 19 cattle, one possible cattle, one sheep/goat and two pigs. All parts of the cattle skeleton were represented, all of which were skeletally mature. One cattle tibia displayed chop marks.

Phase 8

Two cattle teeth were identified: very fragmentary maxillary or mandibular molars, which appeared to be in wear.

Other areas

Two rabbit bones were identified from Trench 65 (Phase 6).

Species composition

The major domesticates dominate the Trevelgue Head vertebrate assemblage (Table 7). Cattle are predominant, followed by sheep/goat, pig and the equids. Both sheep (Ovis aries) and goat (Capra hircus) were positively identified. As usual, regardless of chronological period, sheep predominate. In British assemblages from all periods goat is never very numerous compared to sheep (Albarella 2003; Noddle 1994). Horse (Equus caballus) was also positively identified. It is assumed the remaining equid specimens are also horses, as donkey (E.asinus) has not been positively identified in Britain before the Romano-British period (Armitage 1979; Baxter 1998: 5). The red/fallow deer specimen is almost certainly red deer (Cervus elaphus) because fallow deer (Dama dama) was not introduced to Britain until the medieval period (Chapman & Putman 1991: 511; Grant 1981: 206; Yalden 1999: 104). The rabbit specimens are intrusive, as they were introduced by the Normans (Cowan 1991: 149; Yalden 1999: 138 & 158). The remaining lagomorph bones are probably also rabbit (but could not be positively identified due to fragmentation or immaturity). Conceivably, they could represent hare. If this were the case, they may be mountain hare (Lepus timidus) rather than brown hare (L.europaeus). The presence of brown hare in Britain during this period has yet to be confirmed (Yalden 1999: 127) and Tapper (1991: 155) has suggested it may have been a Roman introduction. The stingray (Dasvatis pastinaca) is almost certainly contemporary because it derived from Context 90467 (located at the base of Midden 3). In addition, stingray is confined to shallow coastal waters and even outer estuaries (Wheeler 1978: 53), and deep sea fishing was a medieval innovation (Barrett et al. 2004; Coull 1972: 62; Kowaleski 2000).

This range of species is typical of a later prehistoric hand-retrieved animal bone assemblage; there is a distinct bias towards the larger domestic mammal species. This may explain why cattle are more numerous than sheep at Trevelgue Head. British Iron Age assemblages are usually dominated by sheep (Hambledon 1999). British assemblages did not become dominated by cattle until the Romano-British period (King 1978 & 1999).

Very few comparable Iron Age vertebrate assemblages exist in Cornwall, one exception being The Rumps, St Minver (Chaplin & Coy 1964). Table 11 compares Trevelgue Head to mainly Romano-British sites from Cornwall. In addition to the Rumps, sites included are: Atlantic Road, Newquay (Ingrem 2000), Crane Godrevy,

Gwithian (Hammon 2004) and Duckpool, Morwenstow (Powell & Serjeantson 1995). Most of these assemblages are hampered because they represent small samples however it has been possible to compare the range of species at each site on a presence/absence basis. Overall, a similar range of species was encountered at each site; the major domesticates were predominant with lesser quantities of wild and marine mammals. In this last respect, Trevelgue Head differed from the other sites because it had a smaller wild and marine component. In all likelihood, sample size and recovery may have been responsible.

Skeletal representation

Overall, most skeletal elements of the major domesticates are present at Trevelgue Head. Body parts normally discarded during the initial stages of carcase processing indicate that whole carcases and possibly live animals were present at the site. Because of the small sample sizes involved, it has not been possible to fully consider how particular species were utilised, what activities were being carried out at Trevelgue Head or whether there was any diachronic change.

The combined Phase 7 assemblage from all excavation areas demonstrates a clear taphonomic pattern that has been strongly influenced by hand-retrieval, resulting in a recovery bias (Figure 2). For cattle, sheep/goat and pig the mandible is the most frequently occurring element. The mandible (and teeth) is perhaps one of the more durable elements, which are usually readily recognised during excavation. The mandible is also prone to heavy fragmentation, which may lead to its overrepresentation. Cattle, sheep/goat and pig produced comparable frequencies of girdle bones (the scapula and pelvis) and upper limb bones (particularly the humerus). Preferential recovery and differential fragmentation may account for this. The girdle bones fragment easily and can be over-represented, for instance. These bones, however have the highest utility and probably represent a genuine artefact of activity at Trevelgue Head, e.g. the consumption of meat/food residue. Cattle also produced vertebrae and lower limb elements (carpals, tarsals, metapodials and phalanges), which confirm the presence of whole carcases and in all likelihood live animals. The same elements for sheep/goat and pig are almost exclusively absent (with the exception of the metapodials). This pattern certainly reflects a recovery bias, as they are considerably smaller than the corresponding cattle elements.

Ageing data

Mandibular tooth eruption and wear in the major domesticates indicates that the majority of animals were sub-adult or adult (Appendix). None were neonatal or juvenile. Post-cranial epiphyseal fusion data indicated a similar pattern (Appendix). Figure 3 displays the fusion data for Phase 7 cattle, which confirms that the vast majority of individuals were skeletally mature at least 42 months) when slaughtered. This pattern would indicate general exploitation; the usual later prehistoric – Romano-British situation. Cattle were presumably utilised for meat, milk, traction and other by-products, whereas sheep/goat for their meat, milk and wool. It is difficult to gauge the role equids played at Trevelgue Head, the combination of deciduous teeth and butchered bone (see above) could tentatively infer that they were also consumed.

It must be remembered that immature mandibles (and post-cranial elements) are prone to greater levels of post-depositional destruction (Munson 2000; Munson & Garniewicz 2003), so may be under-represented in the Trevelgue Head assemblage.

Butchery

Low levels of butchery were observed in the Trevelgue Head assemblage. To summarise, by excavation area or chronological period, the following proportions of cattle, sheep/goat and pig demonstrated butchery evidence (isolated teeth have been excluded from the calculations):

Cattle	12.8% (20 of 156)			
Sheep/goat	7.6% (6 of 85)			
Pig	11.4% (4 of 35)			

Most of the butchery evidence from the major domesticates related to dismemberment and the division of the carcase into smaller portions, mostly in the form of chop and cut marks around joints. In addition, one cattle radius and four metatarsals had been split axially (Trenches 61 and 62 Phase 7). This is normally interpreted as marrow fat extraction and preparation for grease production (by boiling).

One equid scapula from Context 90434 (Trench 62 Phase 7) demonstrated chop marks to the blade. Three of the four antler tine fragments had been sawn transversely, presumably to produce workable 'blanks'. A red deer metacarpal from Context 90257B (Trench 61 Phase 7) displayed knife marks on the distal posterior shaft, which probably denotes dismemberment.

Biometry

Trevelgue Head produced a small biometric sample, principally comprised of cattle and sheep/goat measurements (Appendix). The majority of measurements derive from Phase 7, so it has not been possible to explore diachronic changes relating to breed development and husbandry practices. It has been possible to compare the Trevelgue Head dataset to others from the south-west, namely Atlantic Road, Newquay (Ingrem 2000) and Exeter (Maltby 1979).

Taking into account natural fluctuations and possible differences in herd composition (sex and age), the Trevelgue Head cattle appear to be either slightly smaller or an equivalent size to those from Atlantic Road and Exeter (Table 12). Any discrepancies, i.e. where Trevelgue Head has produced larger specimens, is in all likelihood due to the small samples involved. Smaller Trevelgue Head animals might be expected, due to the slightly earlier date of the material, although Maltby (1979: 36) suggests little breed improvement was evident during the Romano-British period at Exeter.

Table 13 presents the same comparison for sheep/goat. Trevelgue Head and Exeter sheep/goats are of a similar size. The Atlantic Road individuals are smaller. This is peculiar considering the close proximity of Trevelgue Head, and the fact that Atlantic Road is Romano-British and Trevelgue Head is Iron Age.

Conclusions

Animal bone assemblages of any period from Cornwall are unusual, in particular for the Iron Age. Therefore, despite only producing a small vertebrate assemblage, the 1939 Croft Andrew excavations at Trevelgue Head has provided an invaluable opportunity to expand our knowledge of the pastoral economy and husbandry practices of the south-west in later prehistory.

Overall, the assemblage was well-preserved and had not suffered high levels of postdepositional attrition, such as gnawing and weathering. Most fragments were unabraded, indicating that little reworking had taken place. A sizeable proportion of the assemblage derived from the Phase 7 midden deposits, which probably explains the lack of reworking because deeply stratified material is usually better 'protected'.

The major domesticates constituted the majority of the assemblage. Cattle were predominant, followed by sheep/goat (both species were positively identified), then pig and finally equids. Red deer and one stingray tail-spine also indicate the exploitation of wild resources. Tooth eruption and wear, plus post-cranial epiphyseal fusion, demonstrated that the vast majority of animals were sub-adult or adult when slaughtered. Skeletal representation for the domestic species demonstrated that most anatomical elements were represented, with a bias towards the larger and more robust parts of the skeleton. This suggests that whole carcases and possibly live animals were present at Trevelgue Head. A recovery bias (see above), favouring the larger species and larger body parts might explain why cattle are more numerous than sheep/goat, a trend that normally does not become prevalent until the Romano-British period across Britain.

It would appear as though the inhabitants of Trevelgue Head were utilising domestic animals for a variety of products, with no emphasis on any specific husbandry regime. Pig and red deer would suggest nearby woodland. Trevelgue Head is not a particularly suitable location for raising animals (Jacky Nowakowski pers. comm.), so animals may have been driven to the site when and as required. The single stingray specimen may denote the exploitation of inshore fisheries.

The size and stature of the Trevelgue Head Iron Age cattle are on average slightly smaller than their Romano-British counterparts from the south-west. The Romans are widely credited with breed improvement through innovative husbandry techniques and even imported continental stock, so this situation is to be expected. Surprisingly, the Trevelgue Head sheep/goats are larger than those from Atlantic Road (the reverse of the expected chronological pattern). This might suggest that two types of sheep/goats were present in the locality.

Acknowledgements

I would like to thank the following individuals: Jacky Nowakowski for inviting me to analysis this material and for supplying all the necessary information; Polydora Baker for commenting on an earlier version of this report; James Barrett, Keith Dobney, and Mark Ward for supplying fishing references; Eddie Lyons for producing the location map. All failings remain the author's responsibility.

References

- Albarella U 2003 'Tanners, tawyers, horn working and the mystery of the missing goat', *in* Murphy P & Wiltshire P (eds) *The environmental archaeology of industry* (Symposia of the Association for Environmental Archaeology 20). 71-86. Oxford: Oxbow Books
- Armitage P 1979 'Jaw of a mule from the Roman levels, Billinsgate buildings (TR74), City of London'. *The London Archaeologist* **3**, 340-345
- Baker P 2002 Assessment of the animal bones from Trevelgue Head, Cornwall. Portsmouth: Centre for Archaeology, English Heritage. Unpublished report
- Barrett, J H, Locker A M & Roberts C M 2004 "Dark Age economics' revisited: The English fish bone evidence AD 600-1600'. *Antiquity* **78**, 646-664
- Baxter I L 1998 'Species identification of equids from western European archaeological deposits: Methodologies, techniques and problems', *in* Anderson S & Boyle K (eds) *Current and recent research in osteoarchaeology: Proceedings of the third meeting of the Osteoarchaeological Research Group held in Leicester on 18th November 1995.* 3-17. Oxford: Oxbow Books
- Boessneck J 1969 'Osteological differences between sheep (*Ovis aries* Linné) and goat (*Capra hircus* Linné)', *in* Brothwell D R & Higgs E S (eds) Science in archaeology: A comprehensive survey of progress and research. 331-358. London: Thames & Hudson
- Callou C 1997 Diagnose différentielle des principaux éléments squelettiques du Lapin (genre Oryctolagus) et du Lièvre (genre Lepus) en Europe occidentale (Fiches d'ostélogie animale pour l'archélogie série B: Mammifères 8). Paris: Centre de Recherches Archéologiques du Centre National de la Recherche Scientifique
- Chaplin E & Coy J P 1964 'Appendix 2: Report on the animal bones' (31-34), *in* Brooks R T 'The Rumps, St Minver: Interim report on the 1963 excavations'. *Cornish Archaeology* **3**, 26-34
- Chapman N G & Putman R J 1991 'Fallow deer *Dama dama*', *in* Corbet G B & Harris S (eds) *The handbook of British mammals*. 508-518. Oxford: Blackwell Scientific Publications
- Coull J R 1972 The fisheries of Europe: An economic geography. London: G Bull & Sons Ltd
- Cowan D P 1991 'Rabbit Oryctolagus cuniculus', in Corbet G B & Harris S (eds) The handbook of British mammals. 146-154. Oxford: Blackwell Scientific Publications
- Davis S J M 1980 'Late Pleistocene and Holocene equid remains from Israel'. Zoological Journal of the Linnéan Society **70**, 289-312
- Davis S J M 1992 A rapid method for recording information about mammal bones from archaeological sites. *Ancient Monuments Laboratory Report 19/92*. London: English Heritage
- Dobney K M & Rielly K 1988 'A method for recording archaeological animal bones: The use of diagnostic zones'. *Circaea, The Journal of the Association for Environmental Archaeology* **5**, 79-96

- Driesch A E von den 1976 A guide to the measurement of animal bones from archaeological sites (Bulletin 1). Cambridge, Massachusetts: Peabody Museum of Archaeology & Ethnology, Harvard University
- Eisenmann V 1981 'Etudes des dents inferieures des *Equus* (Mammalia, Perissodactyl) actuels et fossiles'. *Palaeovertebrata* **10**, 127-226
- Grant A 1981 'The significance of deer remains at occupation sites of the Iron Age to the Anglo-Saxon period', *in* Jones M K & Dimbleby G W (eds) *The environment of man: the Iron Age to the Anglo-Saxon period* (British Series 87). 205-212. Oxford: British Archaeological Reports
- Grant A 1982 'The use of tooth wear as a guide to the age of domestic ungulates', *in* Wilson B, Grigson C & Payne S (eds) *Ageing and sexing animal bones from archaeological sites* (British Series 109). 91-108. Oxford: British Archaeological Reports
- Greenfield H J 1988 'Bone consumption by pigs in a contemporary Serbian village: Implications for the interpretation of prehistoric faunal assemblages'. *Journal* of Field Archaeology **15**, 473-479
- Hambleton E 1999 Animal husbandry regimes in Iron Age Britain: A comparative study of faunal assemblages from British Iron Age sites (British Series 282). Oxford: British Archaeological Reports
- Hammon A 2004 *Gwithian, Cornwall: Assessment of the vertebrate remains.* Portsmouth: Centre for Archaeology, English Heritage. Unpublished report
- Harland J F, Barrett J H, Carrott J, Dobney K & Jaques D 2003 'The York system: An integrated zooarchaeological database for research and teaching'. *Internet Archaeology* **13**. <u>http://intarch.ac.uk/journal/issue13/harland_index.html</u>
- Ingrem C 2000 The animal bone from Romano-British deposits at Atlantic Road, Newquay, Cornwall. Truro: Cornwall Archaeological Unit. Unpublished report
- King A 1978 'A comparative survey of bone assemblages from Roman sites in Britain'. *Institute of Archaeology Bulletin* **15**, 207-232
- King A 1999 'Diet in the Roman world: A regional inter-site comparison of the mammal bones'. *Journal of Roman Archaeology* **12**, 160-202
- Kowaleski M 2000 'Fishing and fisheries in the Middle Ages: The western fisheries', in Starkey D J, Reid C & Ashcroft N (eds) England's sea fisheries; The commercial sea fisheries of England and Wales since 1300. 23-28. London: Chatham Publishing
- Kratochvil Z 1969 'Species criteria on the distal section of the tibia in Ovis ammon f. aries L. and Capra aegagrus f. hircus L'. Acta Veterinaria (Brno) 38, 483-490
- Lister A 1996 'The morphological distinction between bones and teeth of fallow deer (*Dama dama*) and red deer (*Cervus elaphus*)'. *International Journal of Osteoarchaeology* **6**, 119-143
- Lyman R L 1999 Vertebrate taphonomy. Cambridge: Cambridge University Press
- Munson P J 2000 'Age correlated differential destruction of bones and its effect on archaeological mortality profiles of domestic sheep and goats'. *Journal of Archaeological Science* **27**, 391-407

- Munson P J & Garniewicz R 2003 'Age mediated survivorship of ungulate mandibles and teeth in canid ravaged faunal assemblages'. *Journal of Archaeological Science* **30**, 405-416
- Noddle B 1994 'The under-rated goat', *in* Hall A R & Kenward H K (eds) *Urban-rural connexions: Perspectives from environmental archaeology* (Oxbow Monograph 47). 117-128. Oxford: Oxbow Books
- Nowakowski J A 2003 Trevelgue Head, Cornwall: Excavations by C K Croft Andrew in 1939: Design for analysis and publication. Truro: Cornwall Archaeological Unit. Unpublished report
- O'Connor T P 2003 The analysis of urban animal bone assemblages: A handbook for archaeologists (The archaeology of York: Principles and methods 19/2). London: York Archaeological Trust/Council for British Archaeology
- Payne S 1973 'Kill-off patterns in sheep and goats: The mandibles from Asvan Kale'. Anatolian Studies: Journal of the British Institute of Archaeology at Ankara 23, 281-303
- Payne S 1985 'Morphological distinctions between the mandibular teeth of young sheep, *Ovis*, and goats, *Capra'. Journal of Archaeological Science* **12**, 139-147
- Payne S 1987 'Reference codes for the wear states in the mandibular cheek teeth of sheep and goats'. *Journal of Archaeological Science* **14**, 609-614
- Payne S & Bull G 1988 'Components of variation in measurements of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains'. *Archaeozoologia* **2**, 27-66
- Powell A & Serjeantson D 1995 'Animal bone' (136-142), *in* Ratcliffe J 'Duckpool, Morwenstow: A Romano-British and early medieval industrial site and harbour'. *Cornish Archaeology* **34**, 81-171
- Prummel W & Frisch H-J 1986 'A guide for the distinction of species, sex and body side in bones of sheep and goat'. *Journal of Archaeological Science* **13**, 567-577
- Reitz E J & Wing E S 1999 Zooarchaeology Cambridge: Cambridge University Press
- Schmid E S 1972 Atlas of animal bones for prehistorians, archaeologists and Quaternary geologists Amsterdam: Elsevier
- Serjeantson D 1996 'The animal bones', *in* Needham S & Spence T (eds) *Runnymede Bridge research excavations, volume 2 refuse and disposal at Area 16 East, Runnymede* 2). 194-223. London: British Museum
- Silver I A 1969 'The ageing of domestic animals', *in* Brothwell D R & Higgs E S (eds) Science and archaeology: A comprehensive survey of progress and research. 283-302. London: Thames & Hudson
- Tapper S C 1991 'Brown hare *Lepus europaeus*', *in* Corbet G B & Harris S (eds) *The handbook of British mammals*. 154-160. Oxford: Blackwell Scientific Publications

Wheeler A 1978 Key to the fishes of northern Europe. London: Frederick Warne Ltd

Yalden D 1999 History of British mammals. London: T & A D Poyser

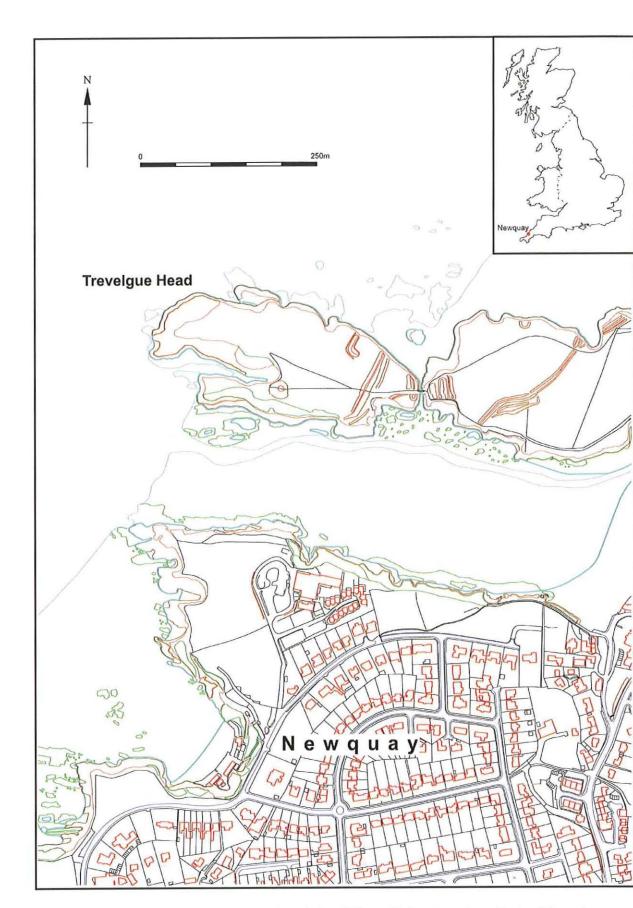
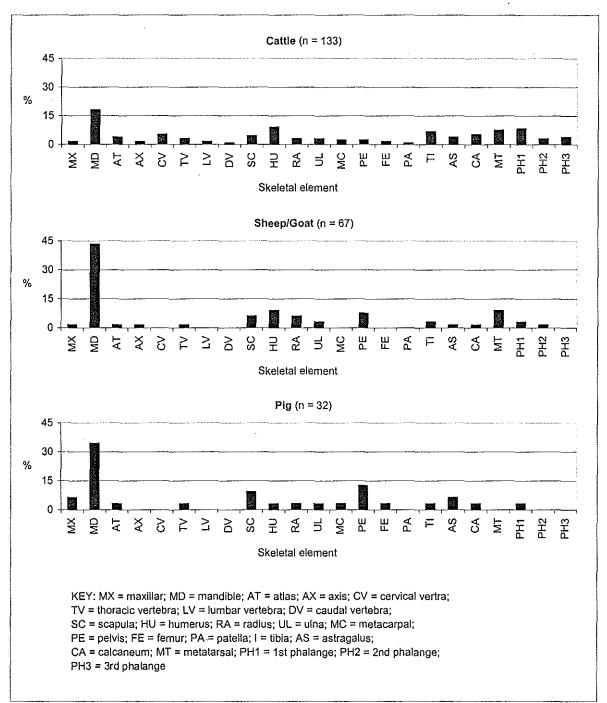



Figure 1. Location map of the multi-vallate cliff castle/promontory fort at Trevelgue Head, Cornwall (NGR SW 825 630)

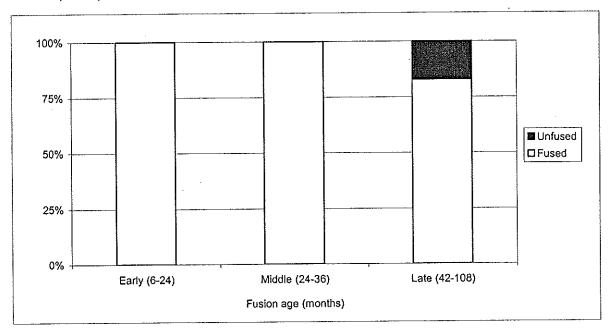

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2. Phase 7: Skeletal representation for cattle, sheep/goat and pig, based on unadjusted NISP (except pig metapodials)

NB. isolated teeth have been excluded from the mandible count

Figure 3. Phase 7: Cattle post-cranial epiphyseal fusion, after Reitz & Wing's (1999: 76, Table 3.5) summary of Schmid (1972) and Silver (1969), based on 89 observations

Table 1. Surface preservation by pha	ise
--------------------------------------	-----

Pres	Excellent	Good	Fair	Poor	Total
6	4	3			7
7	132	131	87	17	367
7/8	3	5	3		11
8	3	2	2		7
Total	142	141	92	17	392

Table 2. Surface preservation by area

Pres	Excellent	Good	Fair	Poor	Total
61	110	109	44	2	265
62	29	25	34	11	99
House 1	1	7	14	4	26
Other	2		•		2
Total	142	141	92	17	392

Table 3. Fragmention by phase

Frag %	0-20	21-40	41-60	61-80	81-100	Total
6		1	3		3	7
7	47	85	52	35	148	367
7/8	3	2		1	5	11
8	1		3		3	7
Total	51	88	58	36	159	392

Table 4. Fragmentation by area

Frag %	0-20	21-40	41-60	61-80	81-100	Total
61	36	65	30	23	111	265
62	13	19	12	12	43	99
House 1	2	4	14	1	3	26
Other					2	2
Total	51	88	58	36	159	392

Table 5. Modification by phase (isolated teeth excluded)

Mod	Canid	Root etched	Unmodified	Total
6		······································	7	7
7	50	8	224	282
7/8	1		8	9
8	1		3	4
Total	52	8	242	302

Table 6. Modification by area (isolated teeth excluded)

Mod	Canid	Root etched	Unmodified	Tota
61	37	4	181	222
62	12	3	49	64
House 1	3	1	10	14
Other			2	2
Total	52	8	242	302

Table 7. Identified (NISP) hand-collected fragments from Trevelgue Head by excavation area, phase and taxor

KEY: B = cattle (Bos taurus); B? = cf. cattle (cf. B.taurus); OVA = sheep (Ovis aries); CAH = goat (Capra hircus); O = sheep/goat (O.aries/C.hircus); S = pig (Sus s EQC = horse (Equus caballus); EQ = equid (Equus sp.); ORC = rabbit (Oryctolagus cuniculus); LAG = lagomorph (Lagomorpha); CEE = red deer (Cervus elaphus); CD = red/fallow deer (C.elaphus/Dama dama); VUV = red fox (Vulpes vulpes); DAP = stingray (Dasyatis pastinaca); Lrg = indet. large mammal; Med = indet, medium mammal; Bird = indet, bird

Area/Phase/Taxa	В	B?	OVA	CAH	0	S	EQC	EQ	CEE	CD	VUV	ORC	LAG	DAP	Lrg	Med	Bird	Total
Trench 61					······································													
Ph 6	3				2											1		6
Ph 7	118		11	4	50	36	2	5	8		1	6	2	1	25	22	1	292
Ph 7/8	6				3							1	1		2	1		14
Ph 8	1				3	1									2			7
Total	128		11	4	58	37	2	5	8		1	7	3	1	29	24	1	319
Trench 62																		
Ph 7	48				27	9		9	3	1		2			22	18		139
House 1																		
Ph 7	20	1			1	2									2			26
Ph 8	2														2			4
Total	22	1			1	2									4			30
Trench 65																		
Ph 6													2					2
Total	198	1	11	4	86	48	2	14	11	1	1	9	5	1	55	42	1	490

Table 8. Trench 61: Identified (NISP) hand-collected fragments from Trevelgue Head by excavation deposit, phase

KEY: see Table 1

Deposit/Phase/Taxa	В	OVA	CAH	0	S	EQC	EQ	CEE	VUV	ORC	LAG	DAP	Lrg	Med	Bird	Total
Phase 6																
bank														1		1
midden	3			2												5
Phase 7																
demolition	16	1		1	6		1			3			2	1		31
layer	1															1
midden	82	7	1	29	20		4	8		3	2		17	14	1	188
mussel bed	19	3	3	20	10	2			1			1	5	7		71
pit													1			1
Phase 7/8																
layer	1			2						1	1		1			6
subsoil	5			1									1	1		8
Phase 8																
topsoil	1			3	1								2			7
Total	128	11	4	58	37	2	5	8	1	7	3	1	29	24	1	319

Table 9. Trench 62: Identified (NISP) hand-collected fragments
from Trevelgue Head by deposit type, phase and taxon.

Deposit/Phase/Taxa	В	0	S	EQ	CEE	CD	ORC	Lrg	Med	Total
Phase 7										
floor	4	2	1	2		1			1	11
furnace			3					1		4
hearth	9	13	1	1			2	3	1	30
midden	23	9	2	6	2			16	16	74
mussel bed	6	1								7
outcrop	2	1	1					1		5
pit	4	1	1		1			1		8
Total	48	27	9	9	3	1	2	22	18	139

Table 10. House 1: Identified (NISP) hand-collected fragments from Trevelgue Head by deposit type, phase and taxon.

KEY: Table 1

Deposit/Phase/Taxa	В	B?	0	S	Lrg	Total
Phase 6						
layer						
Phase 7						
hearth	1					1
floor	1					1
infill					1	1
layer	10		1	1		12
posthole	4	1		1	1	7
subsoil	1					1
wall	1					1
Phase 8						
hearth	1					1
structure					2	2
topsoil	1					1
Total	20	1	1	2	4	28

Table 11. Inter-site species comparison with other Cornish sites

KEY:

Sites: R = The Rumps (Chaplin & Coy 1964: 32-34); C = Crane Godrevy (Hammon 2004: Table 2); D = Duckpool (Powell & Serjeantson 1995: 137, Table 1); DS = Duckpool si (Powell & Serjeantson 1995: 139, Table 3); Duckpool Heard (Powell & Serjeantson 1995: 138, Table 2); A = Atlantic Road (Ingrem 2000: Table 1); Atlantic Road sieved (Ingrem 2000: Table 2)

Period: EIA-RB = early Iron Age - Romano-British; RB = Romano-British; LRB = late Romano-British; post-RB = post Romano-British

Site	TH	R	С	D	DS	DH	Α	AS
Period	EIA-RB	LIA-ERB	post-RB	LRB	LRB	LRB	RB	RB
Quantification	NISP	MNI	NISP	NISP	NISP	NISP	NISP	NISP
Cattle	199	4	813	43	4	40	220	38
Sheep/Goat	101	19	445	20	8	24	821	273
Pig	48	5	109	23	10	14	67	13
Equid	16		*	2		2	11	
Canid	1		*		1		5	1
Cat				1			4	
Cervid	12	n1	*	3		5	4	1
Lagomorph	14		*			1		
Badger							1	
Pine marten							1	
Beaver		n5						
Otter			*					
Grey seal								
Ceteacean			*					
Rodent			*				1	20
Bird	1	n3	37	3		3	8	1
Amphibian							1	8
Fish	1		362				1	18
Total	393	n/a	1766	95	23	89	1145	373

Quantification: NISP = number of identified skeletal specimens; MNI = minimum number of individuals; n = number

Table 12. Cattle biometry comparison (Atlantic Road, Newquay - Ingrem 2000: Appendix; Exeter - Maltby 1979: 164-167, Table 65)

Site	Elem	Meas	Phase	N	Range	Mean
Trevelgue	HU	BT	IA	7	62.1 - 75.3	65.4
Exeter	HU	BT.	RB	4	59.8 - 65.0	62.5
Trevelgue	HU	ΗТ	IA	8	34.7 - 42.8	37.9
Exeter	HU	НΤ	RB	6	36.0 - 42.9	39.7
Trevelgue	ΤI	Bd	IA	6	48.1 - 57.0	52.5
Exeter	ΤI	Bd	AD55-300	9	49.7 - 63.3	55.4
Exeter	TI	Bd	AD300+	11	50.1 - 65.1	55.7
Atlantic Rd	ΤI	Bd	RB	5	51.1 - 58.5	54.2
Trevelgue	ΤI	Dd	IA	6	34.9 - 40.4	39.5
Exeter	ΤI	Dd	AD55-300	11	35.3 - 47.3	41.3
Exeter	TI	Dd	AD300+	11	35.0 - 46.0	39.5
Atlantic Rd	TI	Dd	RB	6	37.4 - 41.4	40.7
Trevelgue	AS	GLI	IA'	4	54.5 - 60.8	57.4
Exeter	AS	GLI	AD55-300	14	50.7 - 59.6	55.2
Exeter	AS	GLI	AD300+	18	54.3 - 62.0	58.3
Atlantic Rd	AS	GLI	RB	4	54.5 - 58.5	56.4
Trevelgue	AS	GLm	IA	4	50.1 - 54.5	52.1
Exeter	AS	GLm	AD55-300	13	47.1 - 54.6	50.5
Exeter	AS	GLm	AD300+	18	48.8 - 61.6	53.6
Atlantic Rd	AS	GLm	RB	4	47.8 - 51.5	50.5
Trevelgue	AS	DI	IA	4	29.5 - 34.2	31.7
Exeter	AS	DI	AD55-300	14	28.9 - 35.3	31.6
Exeter	AS	DI	AD300+	18	29.1 - 38.3	33.3
Trevelgue	MT	BatF	IA	2	45.1 - 52.4	48.8
Exeter	MT	BatF	AD55-300	24	38.3 - 49.5	42.3
Exeter	MT	BatF	AD300+	25	36.9 - 51.1	44.0

Table 13. Sheep/Goat biometry comparison (Atlantic Road, Newquay - Ingrem 200 Appendix; Exeter - Maltby 1979: 181-185, Table 79)

Site	Elem	Meas	Phase	N	Range	Mean
Trevelque	SC	SLC	IA	2	17.2 - 17.4	17.3
Exeter	SC	SLC	RB	19	15.9 - 18.9	17.5
Trevelgue	HU	вт	IA	3	24.5 - 27.0	25.8
Exeter	HU	BT	AD55-300	10	23.0 - 27.2	25.3
Exeter	HU	BT	AD100-300	16	23.3 - 28.8	25.3
Exeter	HU	BT	AD300+	9	25.8 - 27.5	26.7
Atlantic Rd	HU	BT	RB	5	15.8 - 24.2	20.7
Trevelgue	HU	нт	IA	3	14.3 - 17.3	15.8
Exeter	HU	НΤ	AD55-300	10	14.6 - 18.0	16.6
Exeter	HU	ΗТ	AD100-300	15	14.8 - 18.4	16.7
Exeter	HU	НТ	AD300+	10	16.4 - 18.7	17.3
Atlantic Rd	HU	HT	RB	5	12.1 - 16.2	14.0

Appendices

Skeletal elements

Element codes:

XdP34 = maxillary 3rd or 4th deciduous premolar XdP34 = maxillary 3rd or 4th deciduous premolar XP34 = maxillary 3rd or 4th premolar XM12 = maxillary 1st or 2rd molar XM3 = maxillary 3rd molar DC = caudal vertebra SC = scapula HU = humerus RA = radius UL = ulna XM = maxillary molar H = hamate (carpal) MX = maxilla L = lunate (carpal) TQ = triquetrum (carpal) FC = cranial fragment IT = isolated maxillary or mandibular tooth CP = carpal I = mandibular incisor MC = metacarpal P2 = mandibular 2nd premolar dP3 = mandibular 3nd deciduous premolar P34 = mandibular 3nd or 4th premolar PE = pelvis FE = femur PT = patella M = mandibular molar TI = tibia MD = mandible (with or without teeth) AS = astragalus AT = atlas CA = calcaneum AX = axis NC = navicular-cuboid PH1 = 1^{st} phalange PH2 = 2^{rd} phalange PH3 = 3^{rd} phalange CV = cervical vertebra TV = thoracic vertebra LV = lumbar vertebra

Mandibular tooth eruption and wear

Tooth codes: $dP4 = 4^{th}$ deciduous premolar $P4 = 4^{th}$ premolar $M1 = 1^{st}$ molar

 $M2 = 2^{nd} \text{ molar}$ M3 = 3^{rd} molar M12 = 1^{st} \text{ or } 2^{nd} \text{ molar}

Post-cranial epiphyseal fusion

Aspect codes: P = proximal/anterior/cranial

D = distal/posterior/caudal

Taxa codes: See below

Element codes: See above

Fusion codes: F = fused (or fully ossified) FG = fusing

U = unfused

Measurements

All measurements are given in millimetres (mm). The majority of measurements follow von den Driesch's (1976) definitions. All pig measurements follow the definitions of Payne & Bull (1988). Humerus 'BT', 'HT', 'HTC' and tibia 'Bd' measurements were taken for all species according to Payne & Bull (1988). Cattle, sheep/goat and deer metapodials were measured using the criteria described by Davis (1992).

Taxa codes: B = cattle (Bos taurus) OVA = sheep (Ovis aries) CAH = goat (Capra hircus) O = sheep/goat (O.aries/C.hircus)

S = pig (Sus scrofa) EQ = equid (Equus sp.) CEE = red deer (Cervus elaphus)

Area		6	1		62	Hou	se 1	Oti	
Phase	6	7	7/8	8	7	7	8	7	8
XdP34		4							
XP34					1				
XM12		5			3	1			
XM3		2			4				
MX		5 2 2 4							
FC						1			
IT		1 3			5	7	2	6	1
1.		3			1	1			
P2					1				
P34					2				
М		1	1						
MD	1	17	2		6	1			
AT		4				1			
AX	1								
CV		5			2 1				
τv		2 5 3 2 1	1		1				
LV	1	2							
DV		1							
SC		4			2 5				
ΗU		4			5	3			
RA		2			1	1			
UL		2 3				1			
н		1							
L		1							
TQ		1							
CP					1				
MC		3							
PE		3							
FE		2							
PΤ		1							
TI		6	2		2	1			
AS		4			1				
CA		5			1	1			
NC					1				
MT		7			3				
PH1		10			1				
PH2		2		1	2 2				
PH3		3			2				

Appendix 1. Cattle: Skeletal elements (NISP)

Area		6	1		62	House 1
Phase	6	7	7/8	8	7	7
XdP34	· · · · ·	2				
XM12		9	1	1	5	
XM3		1			1	
XM		1				
MX		1				
FC		4				
dP3		2				
M						1
MD	1	20	1		8	
AT					1	
AX		1				
TV					1	
SC		3		1	1	
HU		5			1	
RA	1	3			1	
UL		2				
PE		3			2	
TI		1			1	
AS			1		1	
CA		1				
NC		1		1		
MT		5			1	
PH1					2	
PH2					1	

Appendix 1. Sheep/Goat: Skeletal elements (NISP)

Appendix 1. Pig: Skeletal elements (NISP)

Area	6	1	62	House 1
Phase	7	8	7	7
XP34	1			
XM12			2	
XM3			1	
XM		1		
MX	2			
FC	1		1	
IT				
1			2	
С	3			
M				1
MD	10		1	
AT	1			
τv	1			
SC	3			
HU	1			
RA	1			1
PÉ	4			
FE	1			
TI	1	1		
AS	2			
CA	1			
MT3	1			
MT4	1			
PH1	1			

Phase	Area	Context	ID	dP4	P4	M1	M2	M3	M12	Approx. age
6	61	90443	43					G		adult 3
7	61	90220	398					J		elderly
7	61	90264	67						G	immature+
7	61	90435	99	J						n/a
7	61	90436	263						С	immature+
7	61	90454	225					G		adult 3
7	61	90454	121						J	elderly
7	61	90454	216		G	К	н	G		adult 3
7	61	90454	215		Ε		G	G		adult 3
7	61	90454	129					А		subadult+
7	61	90252A	71						к	immature+
7/8	61	90200	96						G	immature+
7	62	90231	365		А					n/a
7	62	90237	373						к	immature+
7	H1	90457	423						F	immature+

Appendix 2. Cattle: Mandibular tooth eruption and wear ('Approx. age' after O'Connor 2003: 160, Table 31)

Appendix 2. Sheep/Goat: Mandibular tooth eruption and wear ('Approx. age' after O'Connor 2003: 160, Table 31)

Phase	Area	Context	١D	Taxa	dP4	P4	M1	M2	M3	M12	Approx. age
7	61	90386	272	OVA	14L						2+ months
7	61	90448	315	OVA	11L						2+ months
7	61	90454	3	OVA	14L						2+ months
7	61	90257B	195	OVA	14L						2+ months
7	61	90257B	196	OVA	9L						2+ months
7	61	90435	106	CAH	13L						2+ months
6	61	90443	46	0		9A					n/a
7	61	90320	26	0		0	8A	5A			1+ years
7	61	90325	186	0	14L		8A	6A	0		1+ years
7	61	90435	105	0			9A	8A	2A		2-3 years
7	61	90435	108	0						3C	6+ months
7	61	90435	107	0						9A	6+ months
7	61	90436	267	0		9A	9A	9A	11G		4-6 years
7	61	90449	146	0						9A	6+ months
7	61	90454	4	0						5A	6+ months
7	61	90257B	197	0						2A	6+ months
7	61	90257B	198	0						9A	6+ months
7	61	90257B	199	0						0	2+ months
7	62	90220	401	0						9A	6+ months
7	62	90237	346	0						12A	12+ months
7	62	90237	347	0					11G		4+ years
7	62	90250	412	0						9A	6+ months
7	62	90333	467	0					9G		3-4 years
7	62	90231A	404	0					5A		2-3 years
7	62	90231A	403	0						9A	6+ months
7	62	90231A	402	0						9A	6+ months
7	62	90273A	80	0						8A	6+ months
7	HI	90457	433	0		118	11B	9A	11G		4-6 years

Appendix 2. Pig: Mandibular tooth eruption and wear ('Approx. age' after O'Connor 2003: 160, Table 31)

Phase	Area	Context	ID	dP4	P4	M1	M2	M3	M12	Approx. age
7	61	90330	281		F		J	С		adult 2
7	61	90435	112	F		С				immature+
7	61	90448	311		С	F	В			subadult+
7	61	90454	240					D		adult 2
7	62	90273A	81					С		adult 2
7	H1	90406	330					А		subadult+

Phase 7	Area 61	Context 90327	ID 52	Element AT	Prox f	Dist f
7	61 61	90327 90452	52 250	AT	f f	f
7	61	90313	286	AT	f	f
7	61	90313	287	AT	f	, f
7	H1	90457	425	AT	f	f
6	61	90443	44	AX	f	f
7	61	90454	132	AX	f	1
7	61	90454 90454	212	cv	f	f
	61	90454	10	cv	I	f
7 7	61	90324 90330	279	cv		
7				CV	u f	u f
	62	90333	390 237		f	f
7	61 61	90454	307	TV TV	f	f
7 7	61	90448	136		1	
		90454		TV	f	u f
6	61	90443	45 026	LV	f	f
7	61	90454	236	LV		
7	61	90448	308	LV	u	u
7	61	90454	217	SC	f	
7	61	90330	275	SC	f	
7	62	90333	385	SC	f	
7	62	90465	415	SC	f	
7	61	90454	122	HU		f
7	61	90454	123	HU		f
7	61	90454	226	HU		f
7	61	90454	227	HU		f
7	62	90237	371	HU		f
7	62	90238	374	HU		f
7	62	90333	386	HU		f
7	62	90453	391	HU	f	
7	H1	90457	426	HU		f
7	H1	90457	427	HU		f
7	H1	90457	428	HU		f
7	61	90384	82	RA		f
7	61	90454	124	RA	f	
7	62	90252	376	RA	f	
7	H1	90457	429	RA	f	
7	61	90449	141	MC		f
7	61	90454	228	MC		f
7	61	90257B	189	MC	f	
7	61	90454	133	PE	f	
7	61	90454	213	PE	f	
7	61	90383	156	FE		u
7	61	90313	289	FE	f	
7	61	90449	142	TI		f
7	61	90325	182	TI		f
7	61	90257B	190	TI		f
7	61	90452	251	TI		f
7	61	90454	230	TI	f	
7/8	61	90200A	49	TI		f
7/8	61	90200	97	TI	f	•
7	62	90236	336	TI		f
7	62	90333	387	TI	f	'
7	62 H1	90333 90457	431	TI	ł	f
7	61	90457 90383	158	AS	f	1
				AS	f	
7	61 61	90383	159		T f	
7	61	90325	183	AS		
7	61	90452	252	AS	f	
7	62	90220	399	AS	f	
7	61 61	90452	254	CA	f	£
7	61	90454	232	MT	f	f
7	61	90263	86	MT		f
7	61	90454	134	MT		f
7	61	90449	143	MT		f

Appendix 3. Cattle: Post-cranial epiphyseal fusion

Phase	Area	Context	ID	Element	Prox	Dist
7	61	90448	303	MT		f
7	61	90257B	191	MT	f	
7	62	90333	388	MT	f	
7	62	90333	389	MT	f	
7	62	90453	392	MT	f	
7	61	90324	9	P1	f	f
7	61	90384	83	P1	f	f
7	61	90435	101	P1	f	f
7	61	90454	135	P1	f	f
7	61	90383	160	P1	f	f
7	61	90383	161	P1	f	f
7	61	90454	233	P1	f	f
7	61	90452	255	P1	f	f
7	61	90448	304	P1	f	f
7	61	90325	23	P1	f	
7	62	90250	410	P1	f	f
7	61	90454	234	P2	f	f
7	61	90313	291	P2	f	f
8	61	90317	203	P2	f	f
7	62	90231A	408	P2	f	f
7	62	90434	437	P2	f	f

Appendix 3. Cattle: Post-cranial epiphyseal fusion (cont.)

Appendix 3. Sheep/Goat: Post-cranial epiphyseal fusion

Phase	Area	Context	ID	Taxa	Element	Prox	Dist
7	62	90434	439	0	AT	f	f
7	61	90383	169	0	AX		f
7	62	90453A	51	0	TV	f	f
7	61	90435	109	0	SC	f	
8	61	90317	205	0	SC	f	
7	61	90452	257	OVA	HU	u	f
7	61	90263	87	OVA	HU		f
7	61	90263	88	OVA	HU		f
7	61	90252A	74	0	ΗU		f
7	61	90383	171	0	ΗU		fg
7	61	9061	151	OVA	RA	f	f
7	61	90252A	75	0	RA	f	
7	61	90386	36	0	UL	u	
7	61	90313	298	0	PE	f	
7	62	90465	419	0	PE	f	
7	61	90257B	200	OVA	TI		f
7/8	61	90075	21	0	AS	f	
7	62	90453	393	0	AS	f	
7	61	90384	84	OVA	CA	f	
7	61	90383	174	0	MT	f	
7	62	90453	394	0	P1	f	f
7	62	90252	381	0	P1		f
7	62	90463	449	0	P2	f	f

Phase	Area	Context	ID	Element	Prox	Dist
7	61	90448	312	AT	f	f
7	61	90435	117	SC	u	
7	61	90330	282	SC	u	
7	61	90449	144	HU		f
7	61	90448	313	RA	f	
7	61	90325	187	PE	f	
7	61	90330	283	PE	f	
7	61	90326	18	PE	u	
7	61	90383	163	FE	u	
7	61	90454	241	ΤI		f
8	61	90317	207	ΤI		u
7	61	90264	69	AS	f	
7	61	90325	188	AS	f	
7	61	90320	29	MT	f	
7	61	90386	271	MT	f	
7	61	90449	145	P1	u	f

Appendix 3. Pig: Post-cranial epiphyseal fusion

Appendix 4. Cattle: Third molar measurements

Area	Phase	Context	ID	L	W
61	7	90454	225	36.4	16.4
61	7	90454	216	37.2	16.0
61	7	90454	215	37.5	16.3
61	7	90454	129		15.4
62	7	90220	398		16.4

Appendix 4. Sheep/Goat: Tooth measurements

Area	Phase	Context	ID	Taxa	dP4L	dP4W	M1W	M2W	M3W
61	7	90320	26	0			6.4	6.7	
61	7	90325	186	0		5.8			
61	7	90386	272	OVA		5.7			
61	7	90435	106	CAH	17.1	6.3			
61	7	90436	267	0					7.4
61	7	90448	315	OVA		6.1			
61	7	90257B	195	OVA		5.5			
61	7	90257B	196	OVA		6.4			
62	7	90333	467	0					7.4
62	7	90231A	404	0					7.0

Appendix 4. Pig: Tooth measurements

Area	Phase	Context	ID	dP4W	M1WA	M1WP	M2WA	M2WP	M3WA	M3WC
61	7	90330	281				12.4	13.6	13.6	13.1
61	7	90435	112	8.2	9.3	10.0				
61	7	90448	311		9.3	10.5	12.1	12.4		
61	7	90454	240	_					_14.7	15.3

Appendix 4. Scapula measurements

Taxa	Area	Phase	Context	ID	GLP	SLC
В	61	7	90330	275	61.3	
0	61	7	90435	109		17.4
0	61	7	90317	205		17.2

Appendix 4. Humerus measurements

Taxa	Area	Phase	Context	ID	BT	HT	HTC
В	61	7	90454	122	63.8	38.7	27.4
в	61	7	90454	123	75.3	42.8	32.3
в	61	7	90454	226	65.1	36.1	27.6
В	61	7	90454	227		34.7	26.4
В	61	7	90238	374	64.2	37.8	27.4
В	62	7	90237	371	64.9	38.2	28.9
В	H1	7	90457	426	62.1	37.5	28.1
В	H2	8	90457	427	62.2	37.7	27.9
OVA	61	7	90452	257	24.5	14.3	10.8
OVA	61	7	90263	87	27.0	17.3	12.7
OVA	61	7	90263	88	25.9	15.9	11.8
S	61	7	90449	144	30.9	26.4	17.9

Appendix 4. Radius measurements

Taxa	Area	Phase	Context	ID	Bp	BFp
В	H1	7	90457	429	71.7	66.4
S	61	7	90448	313	26.2	

Appendix 4. Tibia measurements

Taxa	Area	Phase	Context	ID	Bd	Dd
B	61	7	90449	142	51.0	40.9
В	61	7	90452	251	57.0	40.4
В	61	7/8	90200A	49	52.0	39.1
В	62	7	90257B	190	54.2	42.3
В	62	7	90236	336	48.1	34.9
в	H1	7	90457	431	52.9	39.3
CEE	62	7	90257B	202	48.2	38.2
CEE	62	7	90251	420	50.0	38.4
EQ	61	7	90436	268	67.9	42.8
OVA	62	7	90257B	200	23.2	18.0
S	61	7	90454	241	28.0	24.5

Appendix 4. Astragalus measurements

Taxa	Area	Phase	Context	ID	GLI	GLm	Bd	DI
В	61	7	90383	158	60.8	54.5	41.1	34.2
В	61	7	90383	159	55.2	49.5	35.6	30.5
В	61	7	90325	183	54.5	50.1	34.8	29.5
в	61	7	90452	252	59.2	54.1	37.4	32.6
CEE	61	7	90454	231	58.9	54.5	37.1	31.8
s	61	7	90325	188	40.3	37.8		

Appendix 4. Calcaneum measurements

Taxa	Area	Phase	Context	ID	GL	С	C+D	DS
В	61	7	90454	126		26.9	46.7	42.9
в	61	7	90452	253		25.1	41.6	41.9
в	61	7	90452	254	116.7	24.8	43.3	41.2
в	61	7	90436	265		24.0	44.6	
в	61	7	90313	290		22.0	41.3	38.4
В	62	7	90465	416		22.8	41.4	37.1
OVA	61	7	90384	84	47.7	11.0	18.9	14.9

A	
Appendix 4.	Metapodial measurements

Taxa	Area	Phase	Context	ID	Elem	GL	SD	Вр	BFp	BatF	Bd	1	2	3	4	5	6	а	ь
В	61	7	90449	141	MC							19.9	26.8	24.9			24.9	24.1	
В	61	7	90454	228	MC						49.1	20.6	27.2	24.0	19.3	26.7	24.4	24.2	23.3
в	61	7	90454	232	MT	196.8	22.8	42.0	39.6	45.1	48.9	20.6	28.2	25.0	19.4	27.2	25.3	23.8	22.5
в	61	7	90454	134	MT					52.4	62.6	24.4	33.2	29.6	22.7		28.7	32.6	27.2
в	61	7	90257B	189	MC			46.6	44.7										
CEE	61	7	90257B	201	MC					38.9	39.3	19.5	27.2	24.3	18.0	25.9	23.8	17.7	17.7

.

•