TOWN QUARRY FARM, BURLESCOMBE, DEVON DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

SCIENTIFIC DATING REPORT

lan Tyers

ARCHAEOLOGICAL SCIENCE Research Department Report Series 102-2007

TOWN QUARRY FARM, BURLESCOMBE, DEVON DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

IAN TYERS

NGR ST08101658

© English Heritage 2007

ISSN 1749-8775

The Research Department Report Series, incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey; and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers are advised to consult the author before citing these reports in any publication. Opinions expressed in Research Department Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: <u>Res.reports@english-heritage.org.uk</u>.

or by writing to English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

A tree-ring dating programme was commissioned on timbers excavated at Town Quarry Farm, Burlescombe, Devon. Dates were obtained for Bronze Age and early medieval structures, and were used to inform the publication of the archaeological excavations. This report archives the dendrochronological results.

CONTRIBUTORS

lan Tyers

ACKNOWLEDGEMENTS

The spot-dating of this material, and the production of publication texts and archive reports was funded by Exeter Archaeology. The radiocarbon dating of timber 475 was funded by the Aggregates Levy Sustainability Fund, administered by English Heritage (project 4534). Steve Allen, Richard Brunning, Rowena Gale, Tim Gent, Jim Spriggs, and Vanessa Straker all kindly provided discussion, data, drawings, photos, or text about the timbers. Derek Hamilton and Peter Marshall discussed the radiocarbon selection criteria and results for the structure 658 sample, Peter kindly provided the text and tables for the radiocarbon calibration and Bayesian modelling sections of this report and corrected earlier drafts of my interpretation of the data.

ARCHIVE LOCATION

Devon Historic Environment Record

DATE OF ANALYSIS

2006

CONTACT DETAILS

lan Tyers Dendrochronological Consultancy Ltd, 65 Crimicar Drive, Sheffield S10 4EF Email: ian@dendro.co.uk

CONTENTS

	Ι
METHODOLOGY	I
RESULTS	3
Structure 678	3
Structure 658	4
Structure 673	7
Other material	7
OVERALL DISCUSSION	7
REFERENCES	8
APPENDIX II	9

INTRODUCTION

This document is a technical archive report on the tree-ring analysis of oak timbers from excavations at Town Quarry Farm, Burlescombe, Devon (sitecode BLC04, NGR *c* ST 0810 1658, Figs 1 and 2) during 2004. This report describes the analytical results of the dendrochronological analysis of 40 samples of timbers from this site. This information has been synthesised with stratigraphic interpretation and other scientific dating information to provide part of the dating framework for the publication of the excavation (Best and Gent forthcoming).

METHODOLOGY

A large number of timbers from the Burlescombe site were examined at the York Archaeological Trust Archaeological Wood Centre in March 2006. This examination was undertaken in conjunction with wood identification lists, record drawings, and site context and grouping information. Only oak timbers were selected for sampling. A number of oak timbers were rejected prior to sampling, because visual inspection indicated they contained too few rings for analysis. Each sample from the selected timbers was obtained by sawing a cross-section from the timber at the optimum location for sapwood and bark survival, whilst also attempting to maximise the ring sequence length. Three ready-cut samples were also collected. The sampled assemblage thus comprised only oaks with possible dendrochronological potential. They were prepared for analysis in order to identify their detailed potential, and the tree-ring analysis of the suitable samples was then undertaken.

Tree-ring dating employs the patterns of tree-growth to determine the calendar dates for the period during which the sampled trees were alive. The amount of wood laid down in any one year by most trees is determined by the climate and other environmental factors. Trees over relatively wide geographical areas can exhibit similar patterns of growth, and this enables dendrochronologists to assign dates to some samples by matching the growth pattern with other ring-sequences that have already been linked together to form reference chronologies.

Each sample was placed in a deep-freeze for 48 hours in order to consolidate the timber. A surface equivalent to the original horizontal plane of the parent tree was then prepared with a variety of bladed tools. This preparation revealed the width of each successive annual tree ring. Each prepared sample could then be accurately assessed for the number of rings it contained, and at this stage it was also possible to determine whether the sequence of ring widths within it could be reliably resolved. Dendrochronological samples need to be free of aberrant anatomical features such as those caused by physical damage to the tree, which may prevent or significantly reduce the chances of successful dating.

Standard dendrochronological analysis methods (eg English Heritage 1998) were applied to each suitable sample. The complete sequence of the annual growth rings in the suitable samples was measured to an accuracy of 0.01mm using a micro-computer based travelling stage. The sequences of ring widths were then plotted onto semi-log graph paper to enable visual comparisons to be made between sequences. In addition, cross-correlation

algorithms (eg Baillie and Pilcher 1973) were employed to search for positions where the ring sequences were highly correlated (Tyers 2004a). Highly correlated positions were checked using the graphs and, if any of these were satisfactory, new composite sequences were constructed from the synchronised sequences. Any *t*-values reported below were derived from the original CROS algorithm (Baillie and Pilcher 1973). A *t*-value of 3.5 or over is usually indicative of a good match, although this is with the proviso that high *t*-values at the same relative or absolute position need to have been obtained from a range of independent sequences, and that these positions were supported by satisfactory visual matching.

Not every tree can be correlated by the statistical tools or the visual examination of the graphs. There are thought to be a number of reasons for this: genetic variations; site-specific issues (for example a tree growing in a stream bed will be less responsive to rainfall); or some traumatic experience in the tree's lifetime, such as injury by pollarding, defoliation events by caterpillars, or similar. These could each produce a sequence dominated by a non-climatic signal. Experimental work with modern trees shows that 5–20% of all oak trees, even when enough rings are obtained, cannot be reliably cross-matched. With the additional problems of archaeological material, it is typically found that less than 80% of apparently suitable archaeological oak samples are datable.

Converting the date obtained for a tree-ring sequence into a useful archaeological date requires a record of the nature of the outermost rings of the sample. If bark or bark-edge survives, a felling date precise to the year or season can be obtained. If no sapwood survives, the date obtained from the sample gives a *terminus post quem* for its use. If some sapwood survives, an estimate for the number of missing rings can be applied to the end-date of the heartwood. This estimate is quite broad and varies by period and region. For this report, a minimum of 10 rings and a maximum of 46 rings is used as a sapwood estimate for the Bronze-Age material.

Timber technology studies demonstrate that many of the tool marks recorded on archaeological timbers can only have been done on green timber. There is little evidence for long-term storage of timber or of widespread use of seasoned, rather than green, timber in either the Roman or the early medieval periods.

Reused timbers can only provide tree-ring dates for the original usage date, not for their reuse. Identifying reused timbers requires careful timber recording during or after archaeological fieldwork, which notes the presence of features which are not functional in the structure. It is always possible that some timbers exhibit no evidence of their earlier usage and are thus 'hidden reused' timbers. The dendrochronological impact of this problem is particularly acute where only single timbers have been dated from a structure.

The analysis may highlight potential same-tree identifications if two or more tree-ring sequences are obtained that are exceptionally highly correlated. Such pairs, or more, are then used as a same-tree group and each can be given the interpreted date of the most complete of the samples. They are most useful where several slices each have lots of rings but only one has any sapwood or where same-tree identifications yield linkages between different structures.

The BC scale used in this report has no year zero, and the year I BC immediately precedes the year AD I. The term 'bog-oak' is used in this report to cover all naturally deposited oaks in bogs, peats, or gravels.

RESULTS

The selected material comprised 40 oak samples each obtained by sawing a cross section from the timber at the optimum location selected in order to maximise the dendrochronological potential.

Structure 678

Structure 678 is the eastern of two wells on the site. The almost-complete absence of finds from this structure meant that it was of unknown date, although it was thought it might be Iron Age on the basis of a single fragment of pottery, and the types of tool marks on the timbers. A total of 22 of the 40 dendrochronological samples obtained from this site were derived from this structure (Table Ia). The material included a mixture of tangential and radial boards, several of which contained large numbers of annual rings.

After preparing the material for measurement, four of the samples were found to contain too few rings for analysis, but the remaining 18 were measured. Fifteen of the measured sequences were found to cross-match (Table 2) to yield a single 208-year composite sequence. Three pairs of samples are sufficiently alike to indicate each pair was derived from the same parent log. The composite sequence mathematically constructed from the matched series at their synchronised positions was compared with reference data of prehistoric and historic date from throughout England and northern Europe. A number of statistically significant matches were obtained between the sequence and reference series indicating the sequence dates from AD 421–628 inclusive (Table 3).

The structure 678 *t*-table (Table 3) lists examples of matches for this tree-ring data against independent reference series. This table is intended to show that there is adequate independent corroboration for the absolute dating given here for this structure. The chronologies which match the structure 678 tree-ring data do not provide any useful indication of the provenance of this material, since many of the data sets available for this period are relatively poorly replicated and somewhat unevenly distributed geographically (eg Tyers *et al* 1994).

Sample 538 is complete to bark-edge, and this sample was felled in the spring of AD 629. Felling date ranges were calculated for seven of the other samples complete to either heartwood/sapwood boundaries or with some surviving sapwood, using a 10–46 year range for the number of missing sapwood rings. The remaining seven samples consisted entirely of heartwood, and for these *terminus post quem* dates were calculated using a 10-year minimum for missing sapwood. Table 1a lists the dates of the individual series, and their calculated interpreted date, and Figure 3 shows the date spans of the individual sequences, and their calculated interpreted dates. The clustering of the end-dates of the entire dated group suggests they are the product of a single event. If this assumption is correct, then sample 538 indicates a construction date of spring AD 629 for this feature.

Structure 658

Structure 658 is a waterlogged pit. A total of 12 of the 40 dendrochronological samples obtained from this site were derived from this structure (Table 1b). The material included some large radial boards, which contained large numbers of annual rings, and a variety of smaller timbers. After preparing the material for measurement, seven of the samples were found to contain too few rings for analysis, or to contain bands of slow growth which included ring sequences that could not be resolved reliably. The remaining five samples were suitable for measurement. Two of the measured sequences were found to cross-match (Table 4), yielding a single 245-year composite sequence. These samples are sufficiently alike to indicate they were derived from the same parent log (Table 4 and Fig 4; blue and red sequences). A composite sequence, mathematically constructed from the matched series at their synchronised positions, was compared with other data from Burlescombe and with reference data of prehistoric and historic date from throughout England and northern Europe.

Initially, no statistically significant matches were obtained between the sequence and reference series. However, it was noted that these two samples exhibit a particularly awkward band of narrow rings that onsets after ring 122 of the composite sequence. This is visible on Figure 4 as a dramatic dip in growth rate. It was also apparent that whilst the two sequences remain synchronised, their overall degree of similarity drops after ring 122. This can be seen by inspection of Figure 4 and also from Tables 5a–c, which show the inter-correlation 'r' values for sub-segments of the two series. Utilising the tree-ring data from this pair of series only up to the onset of this narrow band allows the use of a 122-year ring sequence that is internally consistent.

This 'short' composite sequence was separately compared with other data from Burlescombe and with reference data of prehistoric and historic date from throughout England and northern Europe. The 'short' series was found to strongly correlate with mid second-millennium BC data derived from a site at Testwood in Hampshire and from two sites on the Somerset Levels. Table 6 illustrates this for both the separate samples, and the composite, all in their 'short' form. Table 7 gives the correlations for the full data at the same calendar position.

Table 8 gives the matches between the full and short versions of these series against sample 474 from the same structure. Sample 474 does not have any aberrant growth characteristics, suggesting that the problem growth period in 475 and 483 is caused by an intrinsic factor specific to this tree, rather than indicative of a wider environmental issue. The full composite series from 475 and 483 was combined with 474 to provide a final structure 654 composite sequence.

Table 9 gives the correlations for this sequence against the same chronologies originally identified as matching the 'short' version of 475 and 483. The full composite tree-ring sequence appears to date from 1677–1433 BC. The chronologies which match the structure 658 composite (Table 9) represent most of the extant English oak tree-ring data for this period. This group of correlations were not felt to be sufficiently strong or adequately replicated to use for dating this important feature without additional support. The Testwood3 master sequence and the Testwood3 evaluation sample were themselves

used to provide the dating evidence for Meare Heath and Tinneys, so although these are all independent series they are quite closely related, and it is hard to know for certain how the Burlescombe data can be expected to behave in these circumstances.

There are a number of other tree-ring series of this period with which the Burlescombe data set does not provide correlations of any statistical significance. Several of these only overlap with the latter half of the structure 654 sequence, which is demonstrated to be of poorer statistical quality (Fig 4, Tables 5a–c). These includes data from Newington Quarry, Nottinghamshire (Tyers 2003), and Croston Moss, and Leyland, both in Lancashire (Brown and Baillie 1990). It is reasonable to assume that middle Bronze Age tree-ring data cross-matches over similar distances as oak series from earlier and later periods. Hence it is likely these series are too far away geographically to be of any value for analysing Burlescombe. In addition, there are overlapping contemporaneous data sets from a number of locations in Ireland and on the Continent, but these are also mostly likely to be too far away to be of any significant use for the Burlescombe analysis. A further Testwood sequence, Testwood I (Boswijk and Groves 1997), does overlap the Burlescombe series but does not correlate well (t = 1.70). This observation was not felt to be especially disturbing, as the Testwood I sequence is itself of relatively poor statistical quality, on the basis of its comparison with the contemporary Testwood3 sequence.

Following extensive discussion with English Heritage Scientific Dating Section, it was agreed to undertake a radiocarbon wiggle-matching programme. Sample 475 was the obvious choice for this, since it provided the longest series of rings, and it was a larger timber, which allowed for better sub-sampling. A series of models was employed to identify the most appropriate sampling strategy, and the most appropriate radiocarbon dating technique to employ (Hamilton and Marshall pers comm).

Sample 475 was sectioned into a series of 50mm-thick slices; from each, a series of blocks was cut, containing ten identical discrete 10-year sets of rings. The blocks represent years 18–27, 38–47, ..., 178–187, and 198–207 inclusive of sample 475, when labelled year 1 as the innermost and 245 as the outermost ring (Table 10). If the dendrochronological match identified for this material was correct these should produce radiocarbon dates for the blocks centred on 1660–1651 BC, 1640–1631 BC, ..., 1500–1491 BC, and 1480–1471 BC, ie the block edges were deliberately chosen to lie on decade boundaries.

The outermost rings present on sample 475 were avoided because the presence of fragmented sapwood reduced the overall amount of timber available for sampling at this end of the timber. Similarly, the relatively small amount of timber available on its inner edge reduced the potential of this area. Blocks were cut until each decadal group contained sufficient dry weight for radiometric dating (300–500g). Some of the thicker parts of the plank, with sections of faster-than-average growth, only required a few blocks to be cut, whereas the slowest-growing section required seven separate blocks. This material was submitted to the University of Groningen for gas-proportional radiocarbon dating as samples GrN-30162 to GrN-30171 inclusive. The calibration of these results is described in detail by Marshall *et al* (forthcoming).

In summary, a Bayesian chronological model was constructed that incorporated the relative dating of the blocks, and the number of additional rings after the last block. The Bayesian model was run utilising a number of different calibration datasets, and where

possible the agreement between the dendrochronological analysis and the modelled radiocarbon results was tested statistically (Table 11). The different calibration datasets lead to slightly different posterior density estimates of the last ring date, all of which suggest that the last ring should be later than 1455 cal BC and earlier than 1390 cal BC. The agreement between the radiocarbon and the dendrochronological dating was testable and acceptable for three of the four calibration datasets.

A least-squares 'best fit' for the sequence of radiocarbon results from sample 475 against the calibration curve of Reimer *et al* (2004), utilising the algorithm described in Bronk Ramsey *et al* (2001), indicates a date of *1460 BC* for the last ring submitted as part of the wiggle match (actual date 1471 BC). The result is in accordance with the posterior density estimate of *1480–1440 cal BC (at 95% probability)* provided by the Bayesian analysis using the same calibration data (Reimer *et al* 2004).

The consistency of the results produced by these two methodologies is not surprising, since it has been shown that the least-squares fit gives the highest point in the probability density function derived by the Bayesian method (Bronk Ramsey *et al* 2001). The least-squares method only provides a single date, with no estimate of error.

Given the variety of radiocarbon support, it was felt that the dendrochronological dating derived from cross-correlation with material from Hampshire and Somerset (given in Table 9) could be regarded as reliable. The dendrochronological date of 1433 BC is for the date for the last surviving ring from sample 475. The date of the construction of feature 654 cannot be identified precisely, due to the lack of surviving bark edge on any of the datable samples. Two separate approaches are possible here, both with potential problems in this particular case.

A standard dendrochronological approach would be by applying maximum and minimum sapwood estimates, based on contemporaneous and/or geographically similar figures for oak sapwood. The normal dataset employed (Bayliss and Tyers 2004) is based on medieval and modern oak data. This is probably unsuitable in this case, because samples 475 and 483 are unusually long-lived and slow-grown, both factors which appears to raise the number of sapwood rings present in English oak (Hillam et al 1987; Miles 1997). In addition, sample 475 already includes 36 sapwood rings, which raises the strong possibility that this tree had an unusually large number of sapwood rings by recent standards. There is no appropriate prehistoric sapwood dataset to employ, since few prehistoric samples are recovered with complete sapwood and bark. The estimates here have instead utilised an earlier 'generic' English oak estimate of 10–55 sapwood rings, employed as 95% probability range (Hillam et al 1987). These calculations indicate that 475 was probably felled between 1433 BC and 1414 BC, whilst 483 (from the same tree) is likely to have been felled before 1422 BC. In combination, this suggests that this pair of timbers was from a tree felled between 1433 BC and 1422 BC. Since they are from a single, somewhat aberrant tree, this interpretation may be inaccurate. A date post-1433 BC and pre-1400 BC is perhaps a more appropriate, if cautious, interpretation, as it is extremely unusual to see English oak timbers from any period or deposit type with more than 70 sapwood rings.

An estimate of the felling date of the timber, utilising the radiocarbon dating and then the probability distribution of the number of sapwood rings expected to be missing from the

sample, has also been used to provide an estimate of the date of the felling of the timber. The methodology for this approach is described by Bayliss and Tyers (2004). This method is best employed in situations where multiple trees, each with some evidence of sapwood, are derived from single structural contexts. The calendar ranges calculated are independent of the dendrochronological date, but this approach also utilises sapwood data from medieval and modern oaks, and (as before) may not be appropriate to two samples from a single, possibly aberrant prehistoric tree. Using data from Reimer *et al* (2004), this method suggests that the feature was probably constructed in *1440–1405 cal BC (95% probability)* (Marshall *et al* forthcoming).

Table 1b lists the dendrochronological dates of the individual series from this structure, and their calculated interpreted date. Figure 5 shows the spans of the individual sequences, and their calculated interpreted dates.

Structure 673

Structure 673 is a group of timbers forming a possible revetment near structure 678. A total of three of the 40 samples obtained from this site were derived from this structure (Table Ic). The material included both radial and tangential fragments, each of which contained sufficient, although low, numbers of annual rings for measurement. None of the measured sequences were found to cross-match with each other. The individual series were compared with other data from Burlescombe and with reference data of prehistoric and historic date from throughout England and northern Europe. No statistically significant matches were obtained between the structure 673 series and any of the reference series.

Other material

A total of three other samples were obtained from this site (Table Id). The material included one tangential fragment. This sample contained sufficient, although low, numbers of annual rings for measurement, whilst the other two samples were unsuitable for measurement. The measured sequence was not found to cross-match with other data from Burlescombe and with reference data of prehistoric and historic date from throughout England and northern Europe. No statistically significant matches were obtained between this series and any of the reference series.

OVERALL DISCUSSION

Burlescombe provides two highly significant groups of tree-ring data, though no tree-ring dating can been obtained for the well containing the shoe, because of the absence of suitable timbers. The dated material from structure 678 is the first 'post-Roman dark-age' material analysed from Devon. The production of a precise felling date for the timbers, and hence for the construction of the well, allow for use of written and other historical sources to place this material in a local and national economic, environmental, and historical context.

Structure 658 is more difficult to place in any wider context. Baillie and Brown (2002) produced a figure demonstrating the clustering of the tree-ring dated archaeological features in Ireland, typically trackways. Their figure shows the highly non-random nature of

their results (Baillie and Brown 2002, Figure 1), with two very strong clusters, and two or three lesser ones, of dates from archaeological contexts between 2000 BC and 1 BC. One of these major clusters is at around 1500 BC, containing around 20 structures. This clustering led them to propose that archaeological assemblages of prehistoric timber are derived from a complex interaction of anthropological and environmental circumstances, such that 'there were only narrow time windows when people were felling mature oak trees in order to build structures in wet contexts, wherein those timbers might survive to the present' (Baillie and Brown 2002, 499). Whilst Meare Heath, Tinneys, and Testwood fit into this proposition as being trackways, brushwood platforms, or bridges, and are clustered around 1500 BC, the Burlescombe structure 658 material is slightly later in date, and being a pit or well represents a different type of structure, with different taphonomic processes at work.

REFERENCES

Baillie, M G L, 1992 Dendrochronology, in *An Anglo-Saxon Watermill at Tamworth: Excavations in the Bolebridge Street area of Tamworth, Staffordshire in 1971 and 1978* (P Rahtz and R Meeson), CBA Res Rep, **83**, 122–4

Baillie, M G L, and Brown, D M, 2002 Oak dendrochronology: some recent archaeological developments from an Irish perspective, *Antiquity*, **76**(292), 497–505

Baillie, M G L, and Pilcher, J R, 1973 A simple crossdating program for tree-ring research, *Tree Ring Bull*, **33**, 7–14

Bayliss, A, and Tyers, I, 2004 Interpreting radiocarbon dates using evidence from tree rings, *Radiocarbon*, **46**, 957–64

Best, J, and Gent, T, forthcoming Bronze Age burnt mounds and early medieval timber structures at Town Farm Quarry, Burlescombe, Devon, *Archaeol J*

Boswijk, G, and Groves, C, 1997 D*endrochronological analysis of timbers from Meadow Lake excavations, Testwood Lakes, Netley Marsh, Hampshire*, ARCUS Rep, 281

Bronk Ramsey, C, van der Plicht, J, and Weninger, B, 2001 'Wiggle matching' radiocarbon dates, *Radiocarbon*, **43**, 381–9

Brown, D M, and Baillie, M G L, 1990 Construction and dating of a 5000 year English bog oak tree-ring chronology, in *Tree Rings and Environment* (ed O Eggertsson), LUNDQUA report 34, 72–5

English Heritage, 1998 *Dendrochronology: guidelines on producing and interpreting dendrochronological dates*, London

Groves, C, 1991 Absolute dating, in The structural sequence and environmental remains from Castle Street, Carlisle: Excavations 1981–2 (M R McCarthy), Carlisle Excavation reports, Fascicule 1, 50–3

Groves, C, and Hillam, J, forthcoming Tree-ring analysis of timbers excavated at York Coppergate: Periods 3–5, in *Early Medieval Occupation at 16–22 Coppergate* (R A Hall and K Hunter-Mann)

Hillam, J, 1984 Dendrochronology – Hamwic, Six Dials, 1981, Anc Mon Lab Rep, 4167

Hillam, J, 1987 *Tree-ring dating of oak timbers from the Hasholme Logboat*, Anc Mon Lab Rep, **35/87**

Hillam, J, 1990 *Tree-ring analysis of well timbers from West Heslerton, North Yorkshire*, Anc Mon Lab Rep, **117/90**

Hillam, J, Morgan, R A, and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, in *Applications of tree-ring studies* (ed R G W Ward), BAR Int Ser, **333**, 165–85

Marshall, P D, Hamilton, W D, Tyers, I, Cook, G, van der Plicht, H, and Bronk Ramsey, C, forthcoming The dating, in Bronze Age burnt mounds and early medieval timber structures at Town Farm Quarry, Burlescombe, Devon, *Archaeol J* (J Best and T Gent)

Miles, D M, 1997 The interpretation, presentation and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Morgan, R A, 1978a Tree-ring studies in the Somerset Levels: the Meare Heath track, *Somerset Levels Pap*, **4**, 40–1

Morgan, R A, 1978b Tree-ring studies in the Somerset Levels: Tinney's Ground, *Somerset Levels Pap*, **4**, 82–5

Morgan, R A, 1979 Tree-ring studies in the Somerset Levels: floating oak tree-ring chronologies from the trackways and their radiocarbon dating, *Somerset Levels Pap*, **5**, 98–100

Morgan, R A, 1980 Tree-ring studies in the Somerset Levels: Tinney's Ground, *Somerset Levels Pap*, **6**, 69–72

Morgan, R A, 1982 Tree-ring studies in the Somerset Levels: the Meare Heath track 1974–1980, *Somerset Levels Pap*, **8**, 39–45

Morgan, R A, 1989 Tree-ring studies in the Somerset Levels: fifteen years of studying trackway wood, *Somerset Levels Pap*, **4**, 62–3

Pearson, G W, and Stuiver, M, 1986 High-precision calibration of the radiocarbon time scale, 500–2500 BC, *Radiocarbon*, **28**, 839–62

Pearson, G W, and Stuiver, M, 1993 High-precision bi-decadal calibration of the radiocarbon time scale, 500–2500 BC, *Radiocarbon*, **35**, 25–34

Reimer, P, Baillie, M G L, Bard, E, Bayliss, A, Beck, J, Bertrand, C, Blackwell, P, Buck, C, Burr, G, Cutler, K, Damon, P, Edwards, R, Fairbanks, R, Friedrich, M, Guilderson, T, Hogg, A, Hughen, K, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, R, Remmele, S, Southon, J, Stuiver, M, Talamo, S, Taylor, F, van der Plicht, J, and Weyhenmeyer, C, 2004 IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP, *Radiocarbon*, **46**, 1029–58

Stuiver, M, Reimer, P, Bard, E, Beck, J, Burr, G, Hughen, K, Kromer, B, McCormac, G, van der Plicht, J, and Spurk, M, 1998 INTCAL98 radiocarbon age calibration, 24000–0 cal BP, *Radiocarbon*, **40**(3), 1041–83

Tyers, I, 2001 Interim report on the tree-ring analysis of timbers excavated at Guildhall, City of London, ARCUS rep, 518

Tyers, I, 2003 *Dendrochronological spot-dates of samples from Newington Quarry nr Misson (NQ02), Nottinghamshire*, ARCUS Rep, 573b

Tyers, I, 2004a Dendro for Windows program guide 3rd edn, ARCUS Rep, 500b

Tyers, I, 2004b *Tree-ring analysis of archaeological timbers from the Testwood III site, Netley Marsh, Hampshire*, ARCUS Rep, 573g

Tyers, I, 2007 *Tree-ring spot-dates of archaeological samples: Welham Bridge logboat, East Riding of Yorkshire (sitecode ERYMS 2004.19)*, Dendro Co Rep, 76

Tyers, I, forthcoming The absolute dating of oak tree-ring sequences from the Meare Heath track and Tinney's A track, Somerset Levels, in *Monuments at Risk in Somerset's Peatlands* (R Brunning)

Tyers, I, Hillam, J, and Groves, C, 1994 Trees and woodland in the Saxon period: the dendrochronological evidence, in *Environment and Economy in Anglo-Saxon England* (J Rackham), CBA Res Rep, 89, 12–22

Figure I. Town Quarry Farm, Burlescombe, site location.

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2. The Burlescombe site, showing the relative location of the principal wood bearing structures 658 and 678. Figure supplied by Tim Gent, Exeter Archaeology

Figure 3 Bar diagram showing the calendar positions of the measured and dated tree-ring sequences for samples from Burlescombe site BLC04 structure 678. The felling date interpretations utilising a 10–46 sapwood estimate are given for each timber. White segments of bars are heartwood. Hatched segments are sapwood

Figure 4. The tree-ring series from 475 (red), 483 (blue) and 474 (black). Note the major dip in growth between c 1555 BC and c 1510 BC in samples 475 and 483, and again after c 1490 BC. Neither of these events occur in sample 474. These two samples are less similar after 1555 BC than they are before it, see Table 5. The 'short' series used in Tables 6 and 8 utilise the 475 and 483 series from their earliest rings through to 1556 BC inclusive

Figure 5 Bar diagram showing the calendar positions of the measured and matched treering sequences for samples from Burlescombe site BLC04 structure 658. The felling date interpretations utilising a 10–55 sapwood estimate are also given for each timber

Sample	Size (mm)	Туре	Rings	Sap and	Date of measured	Interpreted result
		<i>,</i> .)	Bark	sequence	
488	120 x 75	Oak	<i>c</i> 36	-	unmeasured	-
500	55 × 25	Oak	50	-	undated	-
520	270 × 35	Oak	161	h/s	AD 438–598	AD 608–44 ª
522	70 × 40	Oak	<i>c</i> 39	-	unmeasured	-
526	285 × 40	Oak	169	20	AD 455–623	AD 623–49 ª
529	115 × 30	Oak	70	-	AD 501-70	after AD 580
530	200 × 40	Oak	128+20	-	AD 434–561	after AD 591
530b	60 × 30	Oak	<i>c</i> 15	-	unmeasured	-
531	80 × 50	Oak	54	-	AD 531-84	after AD 594
533	180 × 25	Oak	117	27	AD 509–625	AD 625–44
534	260 × 45	Oak	133	h/s	AD 466–598	AD 608–44
535	235 × 50	Oak	153	-	AD 439–591	after AD 601 ^b
536	170 × 35	Oak	93	-	undated	-
537	220 × 40	Oak	183	13	AD 426–608	AD 608–41 ^b
538	155 × 30	Oak	147	32+Bs	AD 482–628	Spring AD 629
539	290 × 45	Oak	103	16	AD 505–607	AD 607–37 °
540	110 x 95	Oak	62	-	undated	-
541	220 × 40	Oak	203	20	AD 421–623	AD 623–49
542	230 × 25	Oak	92	-	AD 491–582	after AD 592
543	175 × 25	Oak	134	32	AD 491–624	AD 624–38
544	180 x 35	Oak	101	9	AD 500-600	AD 601–37 °
545	85 × 80	Oak	<i>c</i> 39	-	unmeasured	-

a) Structure 678

KEY ^{a b c} indicates same tree pairs, a small sample labelled 530, arbitrarily assigned 530b here, may or may not be a separate timber from 530, h/s indicates heartwood/sapwood boundary, Bs indicates bark-edge with the start of the following years spring growth, the value in italics indicates the estimated number of unmeasured rings at the end of the measured sequence from 530, *c* indicates estimated numbers of rings in unmeasured samples.

b) Structure 658

Sample	Size (mm)	Туре	Rings	Sap and Date of measured		Interpreted result
				Bark	sequence	
465	95 x 85	Oak	<i>c</i> 60	-	unmeasured	-
468	170 × 160	Oak	<i>c</i> 55	h/s	unmeasured	-
470	90 × 60	Oak	<i>c</i> 20	h/s	unmeasured	-
471	65 x 65	Oak	<i>c</i> 37	?h/s	unmeasured	-
473	120 × 30	Oak	<i>c</i> 31	-	unmeasured	-
474	230 × 30	Oak	108	-	1588–1481 BC	after 1471 BC
474A	155 x 20	Oak	73	-	undated	-
475	250 × 85	Oak	245	36	1677–1433 BC	1433–14 BC ^d
476	55 × 25	Oak	65	-	undated	-
483	195 x 30	Oak	177	h/s	1653–1477 BC	1467–22 BC ^d
485	80 × 65	Oak	<i>c</i> 100	-	unmeasured	-
487	130 × 85	Oak	<i>c</i> 70	-	unmeasured	-

KEY ^d indicates a same tree pair, timber 474A is a separate timber from 474, h/s indicates heartwood/sapwood boundary, ?h/s indicates possible heartwood/sapwood boundary, *c* indicates estimated numbers of rings in unmeasured samples, note many of the unmeasured samples contain one or more bands of narrow rings that cannot be resolved. Interpretations for the dated material utilises a 10–55 year sapwood range.

Table I continued

c) Structure 673

Sample	Size (mm)	Туре	Rings	Sap and	Date of measured	Interpreted result
				Bark	sequence	
506	70 × 30	Oak	42	-	undated	-
507	160 x 35	Oak	58	31+?B	undated	-
508	100 × 35	Oak	37	-	undated	-

KEY ?B indicates possible bark-edge.

d) miscellaneous structures

Sample	Size (mm)	Туре	Rings	Sap and	Date of measured	Interpreted result
				Bark	sequence	
450	155 x 105	Oak	<i>c</i> 40	?h/s	unmeasured	-
511	125 × 60	Oak	<i>c</i> 30	?h/s	unmeasured	-
616	400 × 90	Oak	<i>10</i> +77	-	undated	-

KEY ?h/s indicates possible heartwood/sapwood boundary, value in italics indicates the estimated number of unmeasured rings at start of the measured sequence from 616, *c* indicates the estimated numbers of rings in unmeasured samples.

Table 2. Showingt-values (Baillie and Pilcher 1973) between 15 of the individual series from Burlescombe site BLC04 structure 678. These series were combined into the composite sequence used in Table 3

	526	529	530	531	533	534	535	537	538	539	541	542	543	544
520	18.85	-	-	-	5.22	6.64	3.89	-	5.89	-	6.49	3.33	4.89	-
526		-	-	-	3.65	6.77	3.86	-	4.74	-	4.90	3.27	4.09	3.36
529			-	-	4.66	4.47	3.36	-	5.13	6.58	5.17	-	-	8.57
530				-	-	3.77	7.36	5.69	-	-	5.08	-	-	-
531					-	5.07	4.47	3.30	-	4.24	3.12	3.07	-	3.17
533						4.98	4.30	-	5.07	3.02	6.27	3.54	4.11	4.75
534							5.66	4.06	6.58	5.24	7.59	4.38	6.11	5.14
535								9.70	4.52	3.31	4.43	3.44	-	3.43
537									3.33	-	5.09	-	-	-
538										4.47	7.78	3.04	4.15	4.99
539											5.08	-	-	14.27
541												4.04	4.60	6.02
542													3.14	-
543														-

KEY Bold indicates same tree, - indicates *t*-values less than 3.0

Table 3. Showingt-values (Baillie and Pilcher 1973) between the composite sequence from Burlescombe site BLCO4 structure 678 and contemporaneous reference data

Structure 678, 15 timbers/12 trees: AD 421–628	<i>t-</i> values
Cumbria, Carlisle Castle Street (Groves 1991)	5.49
Hampshire, Hamwic Six Dials (Hillam 1984)	5.43
Ireland, southern horizontal mills composite (Baillie pers comm)	5.49
London, Guildhall (Tyers 2001)	5.71
Staffordshire, Tamworth 72–4 Bolebridge Street (Baillie 1992)	8.13
Yorkshire East, Welham Bridge (Tyers 2007)	6.63
Yorkshire North, Coppergate (Groves and Hillam forthcoming)	5.88
Yorkshire North, West Heslerton (Hillam 1990)	5.94

Table 4. Showing t-value (Baillie and Pilcher 1973) between two of the individual series from Burlescombe site BLCO4 structure 658. Sample 475 was the subject of the radiocarbon dating programme. These samples are from the same tree

	483
475	18.29

Table 5. Three sets of segmented correlation (r values) for the tree-ring series from 475 and 483, using different segment lengths. In each case segments including ring 123 and beyond are generally less well correlated than earlier segments. Calculations from Cofecha version 6.02P (R L Holmes, E R Cook, and P Krusic, and the Tree-Ring Laboratory at Columbia University)

a) Correlations of 20-year segments, lagged 10 years

	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190
	39	49	59	69	79	89	99	109	119	129	139	149	159	169	179	189	199	209
475	.94	.95	.89	.86	.69	.69	.89	.90	.90	.87	.84	.81	.72	.68	.40	.69	.77	.64
483	.94	.95	.89	.86	.69	.69	.89	.90	.90	.87	.84	.81	.72	.68	.40	.69	.76	.64

b) Correlations of 24-year segments, lagged 12 years

	24	36	48	60	72	84	96	108	120	132	44	156	168	180
	47	59	71	83	95	107	119	131	143	155	167	179	191	203
475	.93	.90	.86	.70	.69	.91	.91	.88	.82	.72	.78	.60	.68	.64
483	.93	.90	.86	.70	.69	.91	.91	.88	.82	.72	.78	.60	.68	.64

c) Correlations of 50-year segments, lagged 25 years

	25 74	50 99	75 124	100 149	25 74	50 99	175 224
475	.81	.78	.88	.85	.73	.67	.65
483	.81	.78	.88	.85	.73	.67	.65

Table 6. Showingt-values (Baillie and Pilcher 1973) between the 'short' individual series from samples 475 and 483 and the composite sequence constructed from them and contemporaneous reference data

<i>t</i> -values	475s	483s	475s+483s
	1677–1556 BC	1653–1556 BC	1677–1556 BC
Hampshire, Testwood3 (Tyers 2004b)	6.62	5.69	7.06
Hampshire, Testwood3 eval (Groves pers comm)	-	3.85	3.18
Somerset, Meare Heath (Hillam pers comm)	3.85	-	4.13
Somerset, Tinneys Ground (Hillam pers comm)	4.82	4.11	5.11
East Yorkshire, Hasholme bog oaks (Hillam 1987)	4.59	4.30	4.72

KEY: - = t-values less than 3.00.

Reference chronologies: Testwood3 (Tyers 2004b) and Testwood3 evaluation (Groves pers comm) are independent of each other, the latter was dated using the Testwood3 data (Tyers 2004b). Meare Heath and Tinneys sequences are derived from samples originally analysed by Ruth Morgan (Morgan 1978a; 1978b; 1979; 1980; 1982; 1989), and reworked by Jennifer Hillam (pers comm) this material was dated by the data from Testwood3 (Tyers 2004b), and is reported in Tyers (forthcoming)

Table 7. Showing t-values (Baillie and Pilcher 1973) between the complete individual series from samples 475 and 483 and the composite sequence constructed from them and contemporaneous reference data

<i>t</i> -values	475	483	475+483
	1677–1433 BC	1653–1477 BC	1677–1433 BC
Hampshire, Testwood3 (Tyers 2004b)	4.25	4.00	4.78
Hampshire, Testwood3 eval (Groves pers comm)	-	4.33	3.54
Somerset, Meare Heath (Hillam pers comm)	3.58	-	3.98
Somerset, Tinneys Ground (Hillam pers comm)	4.78	3.30	4.61
East Yorkshire, Hasholme bog oaks (Hillam 1987)	-	3.07	-

KEY: - = t-values less than 3.00. Reference chronologies as Table 6

Table 8. Showing t-values (Baillie and Pilcher 1973) between the complete and shortened individual series from samples 475 and 483 and the sequence from 474

<i>t</i> -values	474
	1588–1481 BC
475all	2.33
483all	3.73
475+483all	3.20
475short	4.94
483short	5.64
475+483short	5.55

Table 9. Showing t-values (Baillie and Pilcher 1973) between the composite sequence constructed from the complete series from samples 475+483 and sample 474 and contemporaneous independent reference data

Structure 654, 2 trees/3 samples: 1677–1433 BC	<i>t</i> -values
Hampshire, Testwood3 (Tyers 2004b)	6.62
Hampshire, Testwood3 eval (Groves pers comm)	3.76
Somerset, Meare Heath (Hillam pers comm)	4.57
Somerset, Tinneys Ground (Hillam pers comm)	4.28
East Yorkshire, Hasholme bog oaks (Hillam 1987)	3.59

Reference chronologies as Table 6

Table 10. Radiocarbon calibration data for decadal blocks of sample 475

Laboratory Code	Annual rings from 475	¹⁴ C Age BP	δ ¹³ C (‰)	Calibrated Date Range (95% confidence)	Posterior Density Estimate (95% probability)
GrN-30162	18–27	3355 ±14	-26.1	1690–1610 cal BC	1660–1625 cal BC
GrN-30163	38–47	334I ±2I	-25.9	1690–1530 cal BC	1640–1605 cal BC
GrN-30164	58–67	3343 ±21	-25.6	1690–1530 cal BC	1620–1585 cal BC
GrN-30165	78–87	3305 ±17	-26.0	1630–1520 cal BC	1600–1565 cal BC
GrN-30166	98-107	3277 ±18	-25.8	1615–1495 cal BC	1580–1545 cal BC
GrN-30167	118-127	3291 ±25	-25.2	1630–1500 cal BC	1560–1525 cal BC
GrN-30168	138-147	3243 ±17	-25.8	1600–1455 cal BC	1540–1505 cal BC
GrN-30169	158–167	3243 ±20	-26.0	1605–1450 cal BC	1520–1485 cal BC
GrN-30170	178–187	3205 ±17	-25.9	1510–1430 cal BC	1500–1465 cal BC
GrN-30171	198 –207	3188 ±24	-26.6	1505–1410 cal BC	1475–1455 cal BC

Table 11. Bayesian analysis for decadal blocks of sample 475

Calibration Data	Last Ring Date, cal BC (95% probability)	Dendrochronology-Radiocarbon Agreement
Reimer <i>et al</i> (2004)	1440—1400	good
Pearson and Stuiver (1986)	1455–1415	good
Pearson and Stuiver (1993)	1430–1390	poor
Stuiver <i>et al</i> (1998)	1440–1395	good

APPENDIX I

151 257 180 211 246 199 282 167 239 174 239	157 418 253 217 245 157 233 131 227 236 224	170 311 179 194 221 227 230 173 236 163 181	189 344 227 176 170 191 194 246 214 180 245	183 402 248 200 193 210 190 281 209 254 220	181 365 168 196 220 218 155 243 178 230 180	342 216 192 217 184 233 178 211 162 172 221	188 201 145 242 172 185 245 200 170 193 205	209 208 146 265 165 214 192 233 185 166	272 240 153 222 201 244 190 205 180 146
blc474a									
187 131 187 238 160 95 90 57	240 192 124 268 157 82 63 54	322 233 138 174 279 54 98 58	284 271 166 280 277 53 61	245 238 258 205 280 75 56	270 281 171 161 156 89 44	229 163 181 199 189 64 54	300 142 206 172 169 72 67	145 149 289 109 107 74 64	105 114 320 125 84 110 56
blc475									
 114 106 166 111 213 133 106 71 87 154 244 153 119 37 52 28 38 72 137 91 44 118 39 54 67 	118 120 203 174 487 119 154 110 107 131 161 102 98 42 45 40 45 76 136 99 68 112 52 76 55	98 103 253 193 360 111 91 102 87 115 193 145 64 44 58 60 46 98 138 106 71 92 62 51 74	 117 195 210 150 191 113 99 140 84 84 140 162 56 59 88 74 44 134 181 151 81 98 49 81 53 	 177 343 118 178 102 123 116 105 105 128 182 95 53 53 51 63 38 82 153 109 69 115 66 72 49 	 134 177 209 125 111 197 109 112 113 124 99 153 37 68 38 71 35 82 150 68 85 87 71 40 	 175 233 254 92 159 79 121 79 196 81 123 137 37 64 38 79 50 73 92 52 60 54 85 43 	145 209 206 96 138 119 98 114 193 95 112 134 48 62 41 71 72 129 68 66 92 49 72 34	105 210 88 115 120 105 87 92 133 111 172 117 77 35 50 41 88 85 56 71 92 46 82 52	 152 142 113 213 277 232 107 62 88 125 120 137 58 38 30 37 91 148 45 66 122 42 107 83

		_	
h	c4	. /	6

64 93 80 140 70 48 65	97 76 71 82 56 67 45	69 60 107 60 60 65 42	95 61 92 83 88 71 42	138 87 90 102 128 76 43	103 83 112 85 116 55	136 82 112 84 112 44	172 99 101 89 196 55	90 77 88 74 64 60	115 83 96 75 39 65
blc483									
126 167 107 108 147 96 112 120 208 115 63 49 49 50 42 77 120 71	283 116 117 160 149 111 130 126 96 202 61 57 53 49 32 74 120 58	293 111 195 81 140 93 218 77 133 153 71 57 49 63 43 79 61 40	176 89 172 152 134 101 259 102 140 178 80 63 51 62 48 103 55 50	99 105 141 82 100 93 171 129 192 145 86 37 44 40 52 114 48 49	102 147 204 198 135 65 131 116 155 166 78 33 36 33 36 33 54 162 44 46	126 170 154 96 98 95 152 199 203 177 40 40 48 30 57 127 63 40	172 388 107 133 94 164 142 134 138 148 46 31 50 32 54 103 62	191 344 102 95 121 112 146 169 226 96 38 42 45 45 45 45 65 90 59	152 220 101 117 110 97 88 134 215 71 51 72 53 44 78 140 69
blc500									
48 230 10 10 99	116 67 79 102 92	9 83 0 07 74	144 63 115 79 59	137 72 156 91 65	176 112 162 76 90	154 113 106 95 83	163 69 139 92 96	169 87 96 91 106	170 96 90 74 108
blc506									
237 113 149 191 177	184 103 148 161 165	62 70 37 25	212 202 154 206	49 83 25 85	52 35 23 2	43 50 20 7	28 28 43 80	2 99 69 20	106 150 142 192
blc507									
87 89 54 66 35 20	100 88 65 67 39 25	117 84 82 65 43 25	56 96 60 81 32 43	61 61 76 59 31 48	76 72 69 59 34 63	59 57 77 64 25 53	69 59 65 62 20 39	67 52 71 41 22	74 52 59 29 20

blc508									
218 136 104 67	87 4 2 88	240 144 131 102	229 181 89 92	177 242 66 89	187 191 78 71	189 193 88 92	163 128 85	136 103 73	110 136 80
blc520									
260 195 191 241 296 278 198 133 120 139 170 116 122 83 103 97 73	343 207 210 255 300 276 208 101 111 133 136 119 131 104 134 128	252 261 173 236 184 275 191 83 118 19 103 126 124 105 106 108	355 334 206 280 168 302 221 100 126 130 104 108 132 104 122 90	331 282 197 225 183 239 216 88 129 159 113 120 143 100 90 91	282 284 245 163 216 236 209 72 110 166 121 119 168 107 75 97	209 171 140 133 295 280 224 92 106 185 129 105 156 108 65 79	243 267 135 162 317 332 193 81 123 139 117 134 127 89 91 79	205 275 178 213 321 353 156 88 135 170 130 144 96 71 94 54	254 256 130 236 329 279 170 126 135 176 157 117 88 74 92 77
blc526									
266 190 176 382 240 160 68 97 118 130 174 162 112 94 86 77 61	348 252 244 373 269 118 77 110 133 146 178 123 87 99 66 90 44	300 179 308 373 214 125 92 113 172 182 135 112 95 104 87 86 46	288 310 392 294 147 108 100 100 169 142 175 94 155 116 95 101 72	331 310 426 301 158 81 96 106 128 139 169 125 156 158 126 112 62	285 361 220 277 140 69 116 101 105 178 146 126 149 125 131 146 79	344 336 219 287 172 76 100 104 117 131 165 114 170 118 124 125 87	232 270 206 193 173 68 105 119 131 162 210 114 109 116 147 132 101	363 192 257 181 183 66 97 125 146 149 294 121 87 111 99 90 104	207 142 342 196 170 68 91 153 158 176 183 120 61 83 90 66
blc529									
89 117 43 58 75 57 62	105 120 37 55 85 73 71	80 123 46 78 72 71 83	74 109 45 62 79 76 68	95 122 40 64 59 60 52	53 136 59 75 96 60 48	57 110 61 94 65 44 62	77 92 75 83 55 41 73	110 102 57 59 59 63 83	105 47 66 54 73 53 91

172 279 121 100 49 129 111 66 125 94 55 89 46	203 162 199 60 47 74 124 58 137 102 60 66 41	39 94 54 44 81 88 62 66 56 81 68 84 35	176 220 146 39 78 166 149 86 188 72 75 63 31	186 239 127 71 146 189 100 97 164 71 84 55 33	302 167 119 59 113 227 72 115 147 69 57 51 43	268 183 75 80 112 177 54 136 126 101 71 59 39	410 161 93 59 126 153 59 160 125 101 67 47 44	338 153 75 41 82 127 52 109 146 104 73 63	308 130 86 48 100 129 65 103 90 92 65 52
blc531									
198 151 141 105 127 153	159 144 108 96 134 175	196 119 118 79 147 126	89 42 22 18 33 60	53 2 08 9 02	42 62 00 66 09	44 89 13 27 23	83 30 10 40 56	88 207 8 36 35	49 75 02 65 27
blc533									
177 291 129 259 202 176 189 164 92 101 52	224 201 129 139 245 161 267 205 177 102 106 63	192 196 135 161 218 150 222 208 114 102 108 67	94 4 28 200 3 4 59 75 88 3 84 04 84	188 130 207 166 259 156 159 182 148 68 120 103	265 122 250 165 164 160 116 141 101 73 136 101	201 139 210 143 145 100 101 134 81 74 94 99	237 136 250 257 176 92 90 168 67 99 64	337 169 203 232 114 148 92 124 64 102 89	266 158 139 134 126 126 118 125 86 94 94
blc534									
110 126 198 275 174 167 191 231 297 194 168 126 203 82	 118 99 231 277 159 227 221 276 378 203 146 167 202 97 	32 64 95 99 77 76 265 258 207 204 75 214 79 93	135 93 224 277 210 210 233 183 274 267 214 206 206	136 79 199 349 259 159 197 143 376 210 280 199 195	146 82 225 315 216 153 243 165 279 232 257 217 175	101 113 197 372 159 160 207 199 253 231 195 232 170	79 168 252 342 144 145 254 185 264 230 221 140 217	108 231 191 252 182 190 269 196 282 260 236 82 142	100 185 200 228 184 176 213 185 228 194 186 144 127

303 208 128 81 101 180 117 110 143 67 60 64 47 47 40 45	322 186 83 98 126 221 166 108 87 60 62 52 37 42 40 35	287 226 93 81 143 281 102 117 88 66 62 49 39 38 49 34	258 167 83 45 101 125 99 116 75 56 70 53 44 31 45	227 198 135 58 100 144 81 114 64 69 71 75 28 38 46	229 145 137 55 136 161 72 141 61 68 77 61 47 30 30	160 217 76 50 105 190 80 139 59 53 62 63 37 30 39	91 160 68 129 243 85 151 59 66 92 38 35 25 31	176 132 52 65 146 143 94 177 71 72 80 39 32 28 36	208 124 81 94 163 111 113 140 71 69 43 44 46 35 36
blc536									
194 86 169 72 77 65 41 39 26 50	254 80 217 69 76 64 37 37 25 43	174 81 142 66 68 63 41 31 29 65	101 89 131 65 46 54 46 37 39	133 137 105 67 61 47 40 39 46	84 118 96 78 52 44 46 44 41	70 101 102 62 50 50 46 41 45	63 134 77 70 54 41 40 42 53	57 206 59 66 65 44 36 30 55	66 165 83 63 53 39 40 28 40
blc537									
413 172 114 148 48 68 108 149 79 131 65 67 79 53 42 27 33 30 41	421 212 197 111 51 50 121 128 74 149 62 86 70 47 45 39 31 33 52	309 182 174 141 63 53 133 68 84 137 66 87 52 56 38 39 29 27 57	390 278 174 117 59 64 154 115 78 125 48 64 58 61 33 43 32 35	395 292 196 77 75 71 163 226 92 86 67 64 42 47 40 44 41 33	315 292 166 77 67 78 185 177 73 83 55 71 54 42 41 40 48 31	330 302 148 62 47 56 116 147 95 77 52 65 60 36 33 36 31 29	 332 251 153 80 55 100 108 102 122 67 63 59 68 33 40 35 36 26 	277 265 133 98 41 80 138 81 140 67 66 81 67 38 42 23 32 29	268 180 166 76 43 76 133 67 123 57 72 56 60 48 30 29 37 41

138 93 137 117 77 71 111 126 120 92 102 77 59 84 79	 119 138 121 105 57 109 111 78 153 96 74 114 42 70 94 	122 156 119 131 68 95 101 110 108 61 74 69 84 63 74	116 159 100 111 74 85 93 97 70 73 100 44 76 58 71	147 151 105 116 84 70 115 148 56 45 123 44 51 56 74	194 142 129 131 105 107 132 98 90 65 89 76 105 77 75	195 125 133 94 113 94 138 114 84 104 113 107 64 110	157 134 141 151 81 81 115 133 110 95 122 116 96 49	179 155 147 78 76 65 176 96 108 83 123 122 95 61	174 161 124 78 83 102 114 109 106 101 119 112 128 64
blc539									
131 126 49 74 62 97 67 65 81 38 31	64 130 70 72 81 95 65 60 104 34 27	48 48 75 91 95 90 96 70 125 34 29	71 84 93 102 50 110 98 101 109 42	140 103 98 61 74 136 109 121 134 56	49 5 82 73 16 77 55 00 36 55	39 40 15 78 85 91 93 43 44 65	47 37 09 11 94 67 80 13 99 60	123 42 119 69 140 88 75 105 86 36	101 44 98 103 147 96 64 85 51 38
blc540									
38 04 35 57 202 99 65	144 111 170 148 245 177 215	174 145 169 137 224 160	210 134 141 150 266 156	132 161 162 204 202 178	188 207 139 193 195 205	223 157 134 190 234 180	183 187 109 192 206 175	40 74 02 62 208 9	137 149 131 141 250 216

h	c54	1
n	C54	

210 209 155 125 140 99 65 157 83 98 103 93 136 73 50 44 73 50 44 73 74 70 64 88	301 177 180 102 138 74 81 139 103 123 103 123 103 113 158 117 38 45 71 47 53 59 97	312 139 131 97 141 103 110 209 96 129 71 157 142 114 32 41 50 77 41 62 144	225 166 88 76 101 81 131 147 96 148 101 142 124 129 41 37 44 43 52 42	343 106 86 117 86 60 103 130 106 160 94 144 99 78 40 41 55 42 60 32	260 67 70 145 84 79 123 132 79 158 133 128 110 104 44 44 80 40 42 28	269 101 128 139 62 112 159 90 93 233 145 172 99 73 41 50 59 59 54 49	256 117 90 119 136 151 60 85 207 120 130 83 95 41 80 57 58 61 53	251 145 93 123 112 108 155 79 119 260 92 86 88 109 44 87 80 79 66 48	242 105 124 112 108 62 159 87 124 104 97 100 117 83 54 73 95 56 61 47
blc542									
197 52 54 60 46 66 95 53 55 43	110 44 49 64 65 85 82 54 49 54	134 40 49 50 76 71 85 52 50	123 41 66 63 118 82 70 56 58	124 50 60 54 87 109 56 50 42	104 55 64 49 81 133 67 55 41	88 62 84 52 85 144 65 44 39	58 58 99 41 90 92 64 44 45	52 59 106 45 59 114 66 61 42	48 48 82 52 83 118 58 53 48
blc543									
202 178 207 144 64 130 90 79 164 215 77 134 109 94	236 234 163 149 50 147 90 82 147 214 87 145 91 92	291 167 166 96 51 109 103 103 128 149 101 89 86 102	221 163 266 78 57 97 89 105 138 124 96 95 108 79	191 160 199 70 57 128 73 89 130 141 86 91 102	287 169 168 76 66 110 83 62 112 155 99 93 97	200 209 220 58 80 139 87 87 160 150 95 86 136	163 233 203 65 114 114 65 109 207 102 99 95 122	193 177 172 81 96 130 86 173 206 120 160 102 88	183 203 139 75 83 111 79 155 182 97 160 108 84

h	C544

94 117 73 97 83 125 92 152 99 147 54	90 100 70 121 85 86 91 85 115 131	138 114 65 96 114 113 89 84 97 98	108 100 48 108 93 138 100 68 103 89	122 87 79 98 117 142 103 53 82 59	143 101 62 75 80 104 73 70 76 39	79 104 93 90 138 131 74 65 101 35	65 53 100 120 102 91 101 78 131 39	97 82 110 118 64 97 108 116 98 37	132 93 109 79 77 133 106 127 147 70
blc616									
81 73 72 119 88 57 47 75	56 55 58 111 100 61 100 88	49 67 50 110 138 98 84 135	38 98 72 150 126 84 79 130	43 57 65 124 97 80 112 135	69 61 92 140 74 68 103 134	58 42 101 219 94 77 111 133	57 35 96 89 91 78 65	81 44 105 86 70 86 81	75 55 87 98 64 77 76