STORETON HALL FARM STORETON, WIRRAL

DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

SCIENTIFIC DATING REPORT

lan Tyers

STORETON HALL FARM STORETON WIRRAL

DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

lan Tyers

NGR: SJ 3052 8442

© English Heritage

ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Archaeological Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: Res.reports@english-heritage.org.uk or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

© ENGLISH HERITAGE 2 - 2010

SUMMARY

A tree-ring dating programme was commissioned on timbers from an outbuilding at Storeton Hall Farm. The results identified that timbers in both the floor and roof of one area of the building were datable by tree-ring dating techniques, with these areas using timbers felled during the late seventeenth century. This dating programme was commissioned to inform future planning decisions on this Building at Risk. This report archives the dendrochronological results.

CONTRIBUTORS

lan Tyers

ACKNOWLEDGEMENTS

The sampling and analysis of timbers at Storeton Hall Farm was funded by English Heritage (EH). Practical help and valuable discussions were provided by Mark Fletcher of Matrix Archaeology, who also provided the descriptive text and the plans and elevations used here.

ARCHIVE LOCATION

Merseyside Historic Environment Record Merseyside Archaeological Service National Museums Liverpool Dock Traffic Office Albert Dock Liverpool L3 4AX

DATE OF INVESTIGATION

2008-9

CONTACT DETAILS

Dendrochronological Consultancy Ltd, 65 Crimicar Drive, Sheffield S10 4EF lan Tyers; ian@dendro.co.uk

CONTENTS

NTRODUCTION	. I
METHODOLOGY	I
RESULTS	3
DISCUSSION	4
NW Farm Building roof	4
NW Farm Building floor	5
SE Farm Building roof	5
Solar	5
REFERENCES	6
FIGURES	7
TABLES	П
APPENDIX I	13

INTRODUCTION

This document is a technical archive report on the tree-ring analysis of oak timbers from an outbuilding at Storeton Hall Farm, Wirral. It is beyond the dendrochronological brief to describe the building in detail or to undertake the production of detailed drawings. Elements of this report may be combined with detailed descriptions, drawings, and other technical reports at some point in the future to form either a comprehensive publication or an archive deposition on the building.

Storeton Hall Farm stands *c* 5km south-west of Birkenhead, and *c* 20km north-west of Chester (NGR SJ 3052 8442) within the Unitary Authority of Wirral Metropolitan Borough Council, formerly in the Metropolitan County of Merseyside, and traditionally in the County of Cheshire (Fig 1). The outbuilding contains the former solar block and one external wall of a former hall. The building is now L-shaped, using one wall of the hall as part of a later two-storey range. The analysis of timbers in areas within this Building at Risk was commissioned to inform future planning decisions.

METHODOLOGY

Tree-ring dating employs the patterns of tree-growth to determine the calendar dates for the period during which the sampled trees were alive. The amount of wood laid down in any one year by most trees is determined by the climate and other environmental factors. Trees over relatively wide geographical areas can exhibit similar patterns of growth, and this enables dendrochronologists to assign dates to some samples by matching the growth pattern with other ring-sequences that have already been linked together to form reference chronologies.

The building was visited in April 2008. An assessment of the dendrochronological potential of timbers in several areas of the structure had been requested by Jennie Stopford (EH IAM Manchester Office). This assessment aimed to identify whether oak timbers with sufficient numbers of rings for analysis existed in any part of the structure. This assessment concluded that the timbers in the roofs and floors all contained suitable material, whilst there were also some timbers of fairly marginal potential embedding in the former hall wall.

The sampling took place during October 2008. The selected timbers were sampled using a 15mm diameter corer attached to an electric drill. The cores were taken as closely as possible along the radius of the timbers so that the maximum number of rings could be obtained for subsequent analysis. The ring sequences in the cores were revealed by sanding.

This preparation revealed the width of each successive annual tree ring. Each prepared sample could then be accurately assessed for the number of rings it contained, and at this stage it was also possible to determine whether the sequence of ring widths within it could be reliably resolved. Dendrochronological samples need to be free of aberrant

anatomical features, such as those caused by physical damage to the tree, which may prevent or significantly reduce the chances of successful dating.

Standard dendrochronological analysis methods (see eg English Heritage 1998) were applied to each suitable sample. The complete sequence of the annual growth rings in the suitable samples was measured to an accuracy of 0.01 mm using a micro-computer based travelling stage. The sequences of ring widths were then plotted onto semi-log graph paper to enable visual comparisons to be made between sequences. In addition, cross-correlation algorithms (eg Baillie and Pilcher 1973) were employed to search for positions where the ring sequences were highly correlated. Highly correlated positions were checked using the graphs and, if any of these were satisfactory, new composite sequences were constructed from the synchronised sequences. Any £-values reported below were derived from the original CROS algorithm (Baillie and Pilcher 1973). A £-value of 3.5 or over is usually indicative of a good match, although this is with the proviso that high £-values at the same relative or absolute position need to have been obtained from a range of independent sequences, and that these positions were supported by satisfactory visual matching.

Not every tree can be correlated by the statistical tools or the visual examination of the graphs. There are thought to be a number of reasons for this: genetic variations; site-specific issues (for example, a tree growing in a stream bed will be less responsive to rainfall); or some traumatic experience in the tree's lifetime, such as injury by pollarding, defoliation events by caterpillars, or similar. These could each produce a sequence dominated by a non-climatic signal. Experimental work with modern trees shows that 5–20% of all oak trees cannot be reliably cross-matched, even when enough rings are obtained.

Converting the date obtained for a tree-ring sequence into a date useful to the interpretation of the building requires a record of the nature of the outermost rings of the sample. If bark or bark-edge survives, a felling date precise to the year or season can be obtained. If no sapwood survives, the date obtained from the sample gives a *terminus post quem* for its use. If some sapwood survives, an estimate for the number of missing rings can be applied to the end-date of the heartwood. This estimate is quite broad and varies by region. This report uses a minimum of 10 rings and a maximum of 46 rings as a sapwood estimate (see eg English Heritage 1998, 10–11).

Where bark-edge or bark survives, the season of felling can be determined by examining the completeness or otherwise of the terminal ring lying directly under the bark. Complete material can be divided into three major categories:

• 'early spring', where only the initial cells of the new growth have begun – this is equivalent to a period in March/April, when the oaks begin leaf-bud formation;

- 'later spring/summer' where the early wood is evidently complete but the late wood is evidently incomplete, which is equivalent to May-through-September of a normal year, and
- 'winter' where the latewood is evidently complete and this is roughly equivalent to September-to-March (of the following year) since the tree is dormant throughout this period and there is no additional growth put on the trunk.

These categories can overlap as, for example, not all oaks simultaneously initiate leaf-bud formation. It should also be noted that slow growing or compressed material cannot always be safely categorised.

Timber technology studies demonstrate that many of the tool marks recorded on ancient timbers can only have been done on green timber. There is little evidence for long-term storage of timber or of widespread use of seasoned, rather than green, timber in the medieval period (see eg English Heritage 1998, 11–12).

Reused timbers can only provide tree-ring dates for the original usage date, not their reuse. Identifying reused timbers requires careful timber recording which notes the presence of features which are not functional in the structure. It is always possible that some timbers exhibit no evidence of earlier usage, and are thus 'hidden reused' timbers. The dendrochronological impact of this problem is particularly acute where only single timbers have been dated from a structure.

The analysis may highlight potential same-tree identifications if two or more tree-ring sequences are obtained that are exceptionally highly correlated. Such pairs, or sometimes more, are then used as a same-tree group and each can be given the interpreted date of the most complete of the samples. They are most useful where several timbers date but only one has any sapwood or where same-tree identifications yield linkages between different areas of a building.

RESULTS

In October 2008 17 timbers of four separate areas of the building were cored; these cores were labelled I–17 inclusive. Four timbers were sampled in the south-east farm building roof, four from the north-west farm building roof, five from the north-west farm building floor, and four from the solar wing roof (Figs 2–4). Each sample was assessed for the wood type, the number of rings it contained, and whether the sequence of ring widths could be reliably resolved. This assessment confirmed that all the sampled timbers were oak (*Quercus* spp.) and that 13 were suitable for dendrochronological analysis. The four exceptions were samples 5, 9, 14, and 15, which all had either too few rings for analysis or had fragmented badly during sampling. There was some survival of sapwood in all of the targeted areas. The details of these samples are provided in Table 1.

The samples were prepared for analysis, measured, and the resultant ring series were compared with each other. Six of the 13 suitable samples were found to cross-match each other well (Table 2). These were then combined into a composite data set of 111 years' length, which was then compared with medieval and later tree-ring data from throughout the British Isles. The composite sequence was found to cross-match strongly against data from sites mostly on the western side of England, with consistent matching into northern England, Wales, and Northern Ireland (Table 3). This cross-matching provided calendar dates for the sequence of AD1572–1682. A summary of the results for the component samples of this chronology are provided in Table 1 and Figure 5.

The remaining individual series were not found to form any consistent groups. These individual series were compared with English, European, and other reference data, as well as the other undated sequences. These series have failed to provide any consistent dating evidence.

The measurement data for all the measured samples are listed in Appendix 1.

DISCUSSION

The dated samples are derived from the floor and roof of a single part of the building, which are probably of the same date. These parts are discussed separately below.

NW Farm Building roof

This roof comprises two large trusses (T3 and T4, Figs 3 and 4a). The four samples from this area comprised two of the four principal rafters, a tie beam, and a purlin. All were suitable for analysis, but only two were found to cross-match the material from the floor below. This material comprised fairly slow-growing medium-aged oaks.

The tree-ring analysis dates the rings present in the cores. The correct interpretation of those dates relies upon the characteristics of the final rings in them. Bark-edge survived on neither of the datable timbers, but significant amounts of sapwood were recovered from one, and the heartwood/sapwood boundary was present on the other. Making allowances for minimum and maximum likely amounts of missing sapwood provides individual felling date ranges for both of the datable timbers. Figure 5 and Table 1 includes the interpreted felling date ranges for both of the datable samples.

The calculation of the common felling period for both dated timbers from this roof suggests a construction date between AD 1682 and c AD 1701. The mathematical combination of estimated sapwood distributions is statistically complex, and to achieve a tighter interpretation would require reliable sapwood data for the area, period, and the specific character of these oaks. Such data are not presently available. Until that point the use of robust combinatorial methods, or alternative statistical approaches might sacrifice a broad and indicative date for a narrower one of potentially spurious precision. It is clear,

however, that this roof utilises timbers felled in the felled in the last two decades of the seventeenth century. There is no suggestion any of this material is either reused or secondary.

NW Farm Building floor

This floor comprises five large girts forming the ground-floor ceiling and floor above (Figs 2 and 4a). All five were sampled. Four were suitable for analysis and all four of these sequences were cross-matched and dated. There is no significant difference between this material and that found in the roof of the same area, with this material also comprising reasonably slow-growing medium-aged oaks.

Bark-edge survived on none of these timbers, but significant amounts of sapwood were recovered from two, and the heartwood/sapwood boundary was present on the remaining two. Figure 5 and Table 1 includes the interpreted felling date ranges for each of these datable samples.

The calculation of the common felling period for each dated timber from this floor suggests a construction date between AD 1682 and c AD 1699. This suggests the floor and roof of the NW Farm Building are contemporaneous.

SE Farm Building roof

This roof is of two trusses (labelled TI and T2, Fig 3) of similar truss form to those in the roof of the NW Farm Building. Four samples were obtained from two principal rafters and two tie beams. Three were suitable for analysis, but none cross-matched each other, or other material from Storeton. This may suggest these timbers were of a different date, or obtained from a different source.

Solar

The solar contained three trusses, labelled T5–T7 (Figs 3 and 4b). One of these (T5) was in an unsafe condition and out of bounds for sampling purposes. The grain of the timbers in this area was more distorted than those in the other two areas of roof. Sampling the best of this material yielded four cores, two of which contained insufficient rings for analysis. The remaining two each yielded short sequences with some sapwood. However, there is no identifiable cross-matching between these series, or between them and the other material from Storeton. This may suggest these timbers were of a different date, or obtained from a different source.

REFERENCES

Arnold, A J, Howard, R E, and Litton, C D, 2004 *Tree-ring analysis of timbers from 17 and 19 St Mary's Chare, Hexham, Northumberland*, Centre for Archaeol Rep, **51/2004**

Baillie, M.G.L., 1977 The Belfast oak chronology to AD1001, Tree Ring Bulletin, 37, 1–12

Baillie, M G L, and Pilcher, J R, 1973 A simple crossdating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

English Heritage, 1998 *Dendrochronology: guidelines on producing and interpreting dendrochronological dates*, London

Hillam, J, and Groves, C, 1992 Tree-ring dates from Sheffield University: List 42, *Vernacular Architect*, 23, 44–7

Howard, R E, Laxton, R R, and Litton, C D, 2003 *Tree-ring analysis of oak timbers from Combermere Abbey, Whitchurch, Cheshire*, Centre for Archaeol Rep, **83/2003**

Tyers, I, 1999 *Tree-ring analysis of the bell tower of the Church of St Mary, Pembridge, Herefordshire*, Anc Mon Lab Rep, **1/99**

Tyers, I, 2006 *Tree-ring analysis of timbers from a building: Moseley Farm Barn, Cookridge, West Yorkshire*, ARCUS Rep, **853u**

Tyers, I, 2008 *Tree-ring analysis of timbers from a building: 'The Barns', Turton, Blackburn with Darwen, Lancashire*, Dendro Co Rep, **222**

Tyers, I, and Price, S, 2007 Tree-ring dates from Wribbenhall, Worcestershire: List 188, Vernacular Architect, 38, 117–9

FIGURES

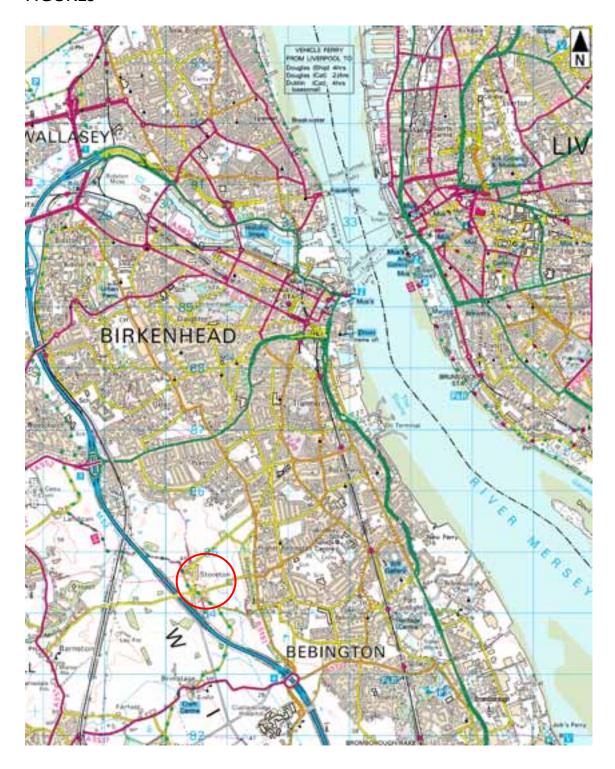


Figure 1. Location of Storeton Hall Farm (circled). © Crown Copyright. All rights reserved. English Heritage 100019088. 2010

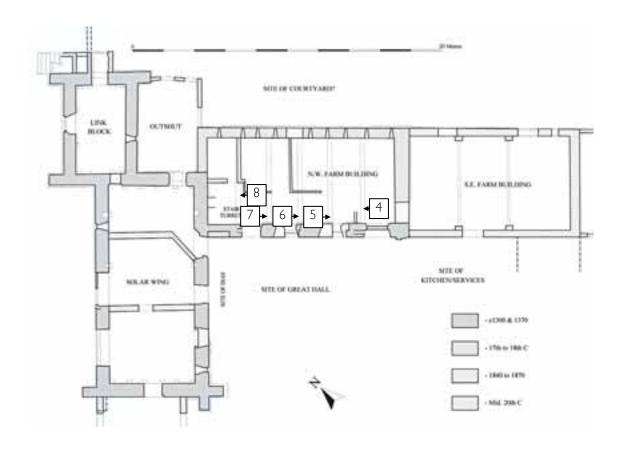


Figure 2. Ground Floor Plan of Storeton Hall Farm showing the location and naming of the areas discussed in this report, and the approximate location of the samples 4–8. Based on a plan supplied by Mark Fletcher, Matrix Archaeology

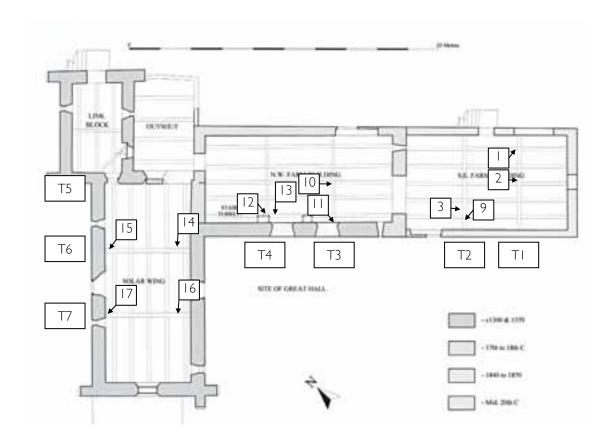


Figure 3. First Floor Plan of Storeton Hall Farm showing the location and naming of the areas discussed in this report, the truss numbering scheme followed (TI-T7), and the approximate location of samples I-3 and 9-I7. Based on a plan supplied by Mark Fletcher, Matrix Archaeology

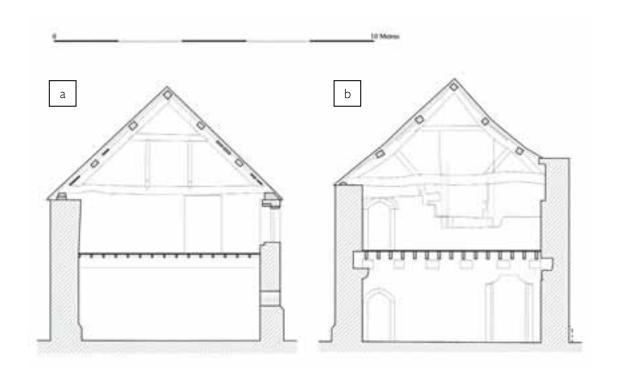


Figure 4. a) Truss T4, floor and section from NW Farm Building, and b) Truss T5, floor and section from Solar Wing, both of Storeton Hall Farm outbuilding. Based on a figure supplied by Mark Fletcher, Matrix Archaeology

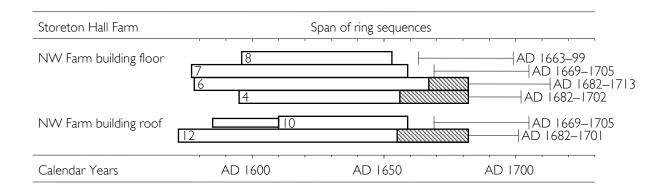


Figure 5. Bar diagram showing the absolute dating positions of the 6 dated tree-ring sequences for samples from Storeton Hall Farm. The interpreted felling dates are also shown for each sample.

KEY White bars are oak heartwood, hatched bars are sapwood, the narrow bar represents unmeasured heartwood.

TABLES

Table 1. Details of the 17 samples from timbers from Storeton Hall Farm.

Sample	Location	Rings	Sap	Date of measured sequence	Interpreted result
I	SE T I north-east principal rafter	62	17+Bs	not dated	-
2	SE T1 tie beam	67	26+Bs	not dated	-
3	SE T2 tie beam	63	26+Bs	not dated	-
4	NW floor beam	88	26	AD 1595–AD 1682	AD 1682–1702
5	NW floor beam	-	-	not measured	-
6	NW floor beam	105	15	AD 1578–AD 1682	AD 1682–1713
7	NW floor beam	83	H/S	AD 1577–AD 1659	AD 1669–1705
8	NW floor beam	58	H/S	AD 1596-AD 1653	AD 1663–99
9	SE T2 south-west principal rafter	-	-	not measured	-
10	NW T3 tie beam	<i>25</i> +50	H/S	AD 1610-AD 1659	AD 1669-1705
11	NW T3 south-west principal rafter	49	-	not dated	-
12	NW T4 south-west principal rafter		27	AD 1572–AD 1682	AD 1682–1701
13	NW T3–T4 south- west lower purlin	<i>20</i> +67	-	not dated	-
14	Solar T6 tie beam	-	-	not measured	-
15	Solar T6 north-west principal rafter	-	-	not measured	-
16	Solar T7 tie beam	59	17	not dated	-
17	Solar T7 north-west principal rafter	51	14	not dated	-

KEY For locations see Figures 2 and 3. SE; south-east Farm Building, trusses T1 and T2 from south-east. NW; north-west Farm Building, trusses T3 and T4 from south-east. Solar; solar wing, trusses T5–T7 from north-east, H/S is heartwood/sapwood edge, Bs bark season early spring/summer, *italics* gives the estimated numbers of unmeasured rings.

Table 2. The t-values (Baillie and Pilcher 1973) between 6 sampled timbers from Storeton Hall Farm. - t-value less than 3.0.

	6	7	8	10	12
4	-	3.49	3.15	-	4.48
6		5.56	5.42	6.71	3.65
7			4.23	5.02	4.60
8				4.09	3.14
10					-

Table 3. Showing example t-values (Baillie and Pilcher 1973) between the composite sequence constructed from Storeton Hall Farm and oak reference data.

Reference chronology	Storeton AD 1572–1682
Anglesey, Hafoty Llansadwen (Hillam and Groves 1992)	5.52
Cheshire, Combermere Abbey (Howard et al 2003)	5.10
Herefordshire, Pembridge bell tower (Tyers 1999)	7.41
Lancashire, Turton Barn (Tyers 2008)	5.00
Northern Ireland regional sequence (Baillie 1977)	5.84
Northumberland, St Marys Chare Hexham (Amold <i>et al</i> 2004)	5.56
Worcestershire, Wribbenhall (Tyers and Price 2007)	7.49
Yorkshire, Cookridge Moseley Wood Farm barn (Tyers 2006)	6.04

APPENDIX I

sth I 3 1 6 2 8 8 5 0 2 7 9 5 5 3 3 4 2 9 4	431 296 59 348 75 201 398	315 325 83 299 100 261	218 289 125 286 73 276	318 342 295 87 97 139	384 392 240 70 169 150	319 250 133 50 92 212	387 281 197 48 159 231	349 264 256 46 106 146	311 101 77 47 126 212
sth2 340 458 448 115 147 87 113	257 462 393 107 194 94 54	380 659 299 84 151 124 93	437 390 292 145 84 143 68	595 478 300 86 97 214 119	642 338 306 80 86 192 182	493 394 332 132 91 160 175	480 399 332 212 96 205	357 404 334 214 83 285	444 460 143 170 83 166
sth3 614 530 349 212 218 171	565 473 282 234 175 144 179	526 623 222 159 197 183 143	644 441 241 217 181 139	516 352 341 153 168 86	378 454 166 173 155 84	490 331 203 114 135 95	605 496 89 93 155 128	820 333 158 154 149 141	657 245 131 174 118 159
sth4 353 431 172 132 87 68 97 35 62	221 482 228 217 70 136 120 26 139	232 492 231 268 132 123 38 28 129	226 414 301 182 220 144 30 36 140	122 345 192 172 111 137 22 55 149	123 355 217 155 125 142 34 66 137	253 242 166 102 121 121 25 72 128	343 254 163 88 61 70 36 60 85	473 287 77 62 113 57 40 57	483 211 78 42 62 70 48 51
sth6 151 169 356 166 139 99 167 83 69 75 105	237 238 297 174 108 128 96 92 64 125 139	250 218 210 160 113 116 98 72 47 108 91	277 260 225 107 77 86 104 69 60 101 93	263 345 152 118 92 122 73 56 52 125 103	238 402 188 62 82 120 72 61 59	278 391 188 96 61 121 64 69 64 72	330 344 80 147 68 67 62 95 90 62	222 258 91 113 55 60 57 123 94 116	269 269 121 121 90 104 71 63 100 119

sth7 415 228 378 140 105 87 127 87 131	573 219 391 149 186 88 193 100	471 253 381 120 154 140 99 120 103	497 264 239 191 137 101 136 106	358 291 273 223 79 77 120 82	292 265 228 170 89 121 100 77	293 313 254 177 63 122 98 88	285 360 255 223 75 113 79 130	269 416 129 180 55 100 66 154	286 343 170 189 79 64 102 174
sth8 214 167 90 61 91 109	191 165 90 73 170 103	172 217 124 81 196 144	193 226 100 86 116 140	177 226 137 78 145 104	240 132 78 61 150 92	172 107 111 66 106 74	202 79 55 79 80 91	183 94 43 68 63	154 104 37 72 85
sth 10 549 184 142 105 111	563 136 107 86 116	439 168 143 96 87	392 131 120 76 67	360 123 81 90 73	406 121 67 93 113	274 93 62 88 143	201 116 83 106 104	256 105 119 123 95	172 167 70 117 85
sth I I 387 275 152 135 43	495 183 151 111 43	471 223 100 131 79	313 366 127 154 85	307 362 158 82 80	237 390 166 77 76	222 369 151 70 55	219 201 139 77 77	261 307 84 44 87	226 257 127 58
sth 12 361 67 77 34 99 97 93 51 66 60 108 67	290 122 107 39 84 40 94 64 110 103 67	319 93 128 52 61 30 65 56 105 80 38	280 139 151 52 71 27 81 52 168 114 37	169 117 109 65 48 33 36 60 154 66 48	126 73 93 81 61 58 70 78 118 57 42	143 64 52 58 96 59 110 77 115 39	197 78 59 46 84 77 86 70 66 75	180 78 60 82 113 77 105 82 65 93 46	139 92 44 77 97 74 91 66 51 104
sth I 3 172 65 56 106 116 101 54	99 62 41 132 92 133 49	88 56 69 101 103 82 44	102 59 114 103 87 100 38	205 62 71 90 105 72 36	139 29 81 133 160 56 38	159 47 111 82 81 42 36	90 65 110 74 45 43	84 52 62 53 66 36	108 57 72 80 70 37

sth 16 197 445 491 88 152 132	166 539 429 70 200 76	167 476 417 73 192 71	322 465 392 86 137 117	277 484 389 120 103 172	296 318 262 162 125 130	380 264 280 183 170 199	398 323 339 203 218 206	407 373 372 180 216 220	464 302 108 185 221
sth 17 325 355 435 447 200 178	366 402 331 394 197	430 419 529 155 150	517 505 436 180 120	515 397 531 222 175	600 444 468 236 180	596 434 523 219 266	558 414 569 207 370	488 337 454 237 277	450 429 422 223 195

ENGLISH HERITAGE RESEARCH DEPARTMENT

English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.

The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

- * Aerial Survey and Investigation
- * Archaeological Projects (excavation)
- * Archaeological Science
- * Archaeological Survey and Investigation (landscape analysis)
- * Architectural Investigation
- * Imaging, Graphics and Survey (including measured and metric survey, and photography)
- * Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.

We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports

For further information visit www.english-heritage.org.uk

