MANOR FARM BARN, WINTERBORNE CLENSTON, DORSET

TREE-RING ANALYSIS OF OAK TIMBERS

SCIENTIFIC DATING REPORT

Martin Bridge

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

Research Report Series 13-2014

MANOR FARM BARN WINTERBORNE CLENSTON DORSET

TREE-RING ANALYSIS OF OAK TIMBERS

Martin Bridge

NGR: ST 83849 03035

© English Heritage

ISSN 2046-9799 (Print) ISSN 2046-9802 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation & Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: Res.reports@english-heritage.org.uk or by writing to:

English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

© ENGLISH HERITAGE 13 - 2014

SUMMARY

The timberwork in this barn includes an ornate reused roof of fifteenth-century style mounted on newer hammer beams, with one truss of cruck construction clearly representing a style different to that of the main roof. The hammer beams and associated supporting frame for the roof are thought to represent the date of construction of the barn itself.

Five timbers from the reused roof were dated and appear to represent a single group of timbers felled within a brief period. The likely range in which felling of these timbers occurred was AD 1474–1506. However the information recorded about lost sapwood on one timber at the time of coring suggests a felling date around AD 1487.

The hammer beams and the east tie beam appear to have been felled at the same time as the timbers in the cruck truss, and thus a likely felling date range for these timbers was found to be AD 1528–49. However, a single timber retained complete sapwood but lost between 1mm and 2mm from the outside on coring. The core had a last measured ring formed in AD 1535, and must therefore have been felled within a few years of this date, meaning that the barn was most likely constructed in the early phase of the Dissolution of monasteries.

A single brace was dated as having come from a tree most likely felled in the period AD 1504–36. Its earlier heartwood-sapwood boundary date suggests it could be a reused or stockpiled timber.

CONTRIBUTORS

Dr M C Bridge

ACKNOWLEDGEMENTS

The original fieldwork was requested by Phil McMahon, English Heritage Inspector of Ancient Monuments and commissioned by Dr John Meadows, then of the English Heritage Scientific Dating Team, who made useful comments on an earlier draft of this report. Subsequent fieldwork was commissioned by Dr Peter Marshall following a request by Shane Gould, English Heritage Inspector of Ancient Monuments. I thank Peter Marshall and Cathy Tyers, both of the English Heritage Scientific Dating Team, for their comments on this report. The keyholder, Barry West, was most helpful in facilitating access.

ARCHIVE LOCATION

Dorset HER
County Hall
Colliton Park
Dorset DTI IXI

DATE OF INVESTIGATION

2007; 2012

© ENGLISH HERITAGE 13 - 2014

CONTACT DETAILS

Dr M C Bridge
UCL Institute of Archaeology
31–34 Gordon Square
London WC1H 0PY
E-mail: martin.bridge@ucl.ac.uk

© ENGLISH HERITAGE 13 - 2014

CONTENTS

Introduction	1
Methodology	1
Ascribing felling dates and date ranges	4
Results	4
Interpretation and Discussion	5
Bibliography	.17
Appendix	.19

INTRODUCTION

Manor Farm Barn (Figs 1 and 2) is a Scheduled Monument and Grade I listed building that is on the English Heritage Heritage at Risk register. The majority of the roof, which is stylistically dated to the fifteenth century, appears to have been taken from a nearby monastic building, the most likely candidate being Milton Abbey, only about 4km to the west (Fig 1). The hammer beams on which the roof now sits appear to be later in origin, and one truss is of cruck construction, unlike all the others. It is thought that these newer timbers may date the construction of the barn itself, which is tentatively placed in the midsixteenth century. The building was undergoing repairs in 2007, and dendrochronological dating was requested by Phil McMahon, English Heritage Inspector of Ancient Monuments, to try to establish the construction date of the old reused roof, which may give more information as to its origin, and of the construction of the barn itself. In 2012 further work was requested by Shane Gould, English Heritage Inspector of Ancient Monuments, in an attempt to try to refine the information gained previously. This report covers the work undertaken in both 2007 and 2012.

METHODOLOGY

The site was assessed in February, and sampled in April, 2007. A subsequent visit was made in March 2012 to take additional samples that would potentially refine the dating evidence. In the initial assessment, accessible oak timbers with more than 50 rings and traces of sapwood were sought, although slightly shorter sequences are sometimes sampled if little other material is available. Those building timbers judged to be potentially useful were cored using a 15mm auger attached to an electric drill. The cores were glued to wooden laths, labelled, and stored for subsequent analysis.

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their tree-ring sequences measured to an accuracy of 0.01 mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by lan Tyers (2004). Crossmatching was attempted by a combination of visual matching and a process of qualified statistical comparison by computer. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

Figure 1: Map showing the general location of Manor Farm Barn (in box) and the proximity of Milton Abbas (south-west). © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

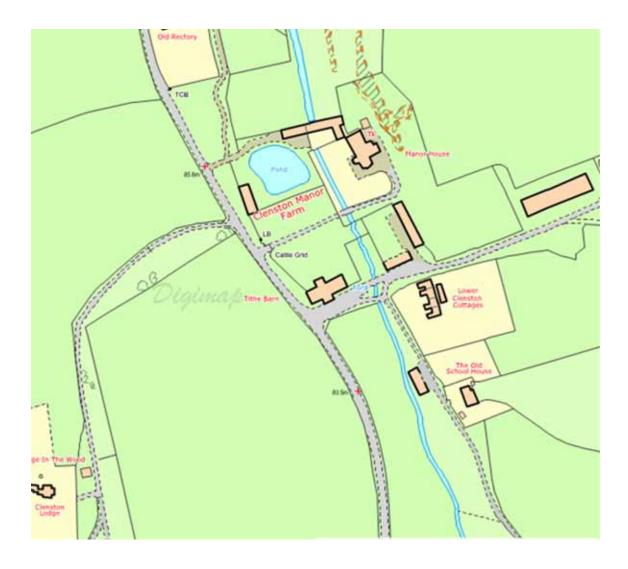


Figure 2: Map showing the location of Manor Farm Barn (centre) within its immediate environs. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-values of 5, 6, and higher, and for these to be well replicated with different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same-tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring, ie if it has only the spring vessels or early wood formed, or the latewood or summer growth, a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem* (*tpq*) or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate (95% confidence interval) relevant to the region of origin should be used in interpretation, which in this area is 9–41 rings (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study. However, evidence suggests that, except in the reuse of timbers, construction in most historical periods took place within a very few years after felling (Salzman 1952; Hollstein 1965; Miles 2005).

RESULTS

All timbers sampled were of oak (*Quercus* spp). Details of the samples are given in Table I, and the positions of the samples are illustrated in Figures 3–7. Detailed drawings were only available for trusses 2, 3, and 6. One would normally expect to sample around eight or more timbers to represent each phase, however some phases here had fewer timbers sampled because of access problems and Health and Safety considerations. Many timbers were accessible via an internal scaffold which gave reasonable access to the easternmost trusses, but other trusses were only accessible by ladder.

One sample, wtc07, contained too few rings to be considered for further analysis and it was not measured. On the first sampling visit in 2007, three timbers had two samples each taken from them in order to try to extract maximum information from the timber. In each case the first and second cores matched each other well both visually and statistically, and the series were combined to produce three new series to represent the respective timbers.

4

```
wtc02a \nu wtc02b, t = 17.3 wtc03a \nu wtc03b, t = 7.0 wtc15a \nu wtc15b. t = 18.9
```

On the second sampling visit in 2012, three of the timbers were re-sampled in an attempt to refine the dating evidence by retaining the sapwood. The original and duplicate series matched well and three new series were therefore produced for subsequent analysis.

```
wtc08 \nu wtc20, t = 7.1, new series wtc2008 produced wtc03 \nu wtc21, t = 12.9, new series wtc2103 produced wtc13 \nu wtc22, t = 21.1, new series wtc2113 produced
```

Cross-matching was then carried out between all the measured timbers, initially within the expected groups at the time of sampling. The results are shown in Tables 2a–c. The cross-matching levels were rather lower than expected for long series of rings, and therefore the series were dated independently for corroborating evidence of the cross-matches found. The best results for each individual dated timber against reference material are given in Table 3. Some of the statistical matching was lower than expected given the relatively good visual matching shown for example between the hammer beams and the east-end tie beam, illustrated in Figure 8.

Sixteen timbers were successfully dated, and these were combined into a single site sequence, WINTCLN, which was dated to the period AD 1339–1535, the strongest matches being given in Table 4. A bar diagram showing the relative positions of overlap of these timbers in the groups in which they were sampled, and the interpreted felling dates for each timber is shown in Figure 9.

INTERPRETATION AND DISCUSSION

The relatively low statistical cross-matching found between most of the samples could result from the timbers coming from different sources, or maybe the result of management practices on individual trees – there is some suggestion for example of regularity in the declines in growth shown by some plots in Figure 8. Nevertheless, individual timbers matched well against the reference data, and the resulting site chronology dates well against relatively local data – the tendency to match with Hampshire chronologies probably reflecting the distribution of available chronologies more than a particular affinity with chronologies to the east of the site.

The reused timbers from the ornate roof form a single group of timbers probably felled within a short period. The mean heartwood/sapwood boundary date for this group is AD 1465, giving a likely felling date range of AD 1474–1506. One sample, wtc08, had complete sapwood at the point of sampling the timber, which was lost on coring. The missing sapwood was recorded as being 31mm deep which, at an average ring width of 1.93mm, estimates the number of missing sapwood rings as 16, giving a likely felling date of c AD 1487.

Although the hammer beams, east tie, and truss 6 were treated as different potential phases, it is apparent from their dates (most easily seen in Figure 9) that these timbers form a single group, probably all felled within a brief period, and probably associated with

the construction of the barn. The likely felling date range derived from the mean heartwood/sapwood boundary date of AD 1508, is AD 1517–49. This range can however be modified in the light of the sample wtc22 which lost a maximum of 2mm to the bark surface on coring. Adding a generous number of rings in this lost outer portion of sapwood allows a likely felling date range of c AD 1536–9 to be derived for this timber. This would imply that the hammer-beam roof supporting the reused ornate roof was constructed in the early years of the Dissolution, which is generally accepted to have started in AD 1536 for the lesser monasteries. This roof was also thought to represent the construction date of the barn itself, and so implies a construction date for the whole barn of around AD 1536–9.

One timber, wtc10, a brace apparently added to truss 2 and not part of the original construction of the barn, was most likely felled in the period AD 1504–36. If this timber had a larger number of sapwood rings than usual then it could be part of the second group of timbers used in construction of the barn, but its earlier heartwood/sapwood boundary date suggests that it may have been a reused or stockpiled timber. This timber is of different dimensions to an equivalent timber on truss 3, further supporting the idea that it is not part of the same group as the other timbers.

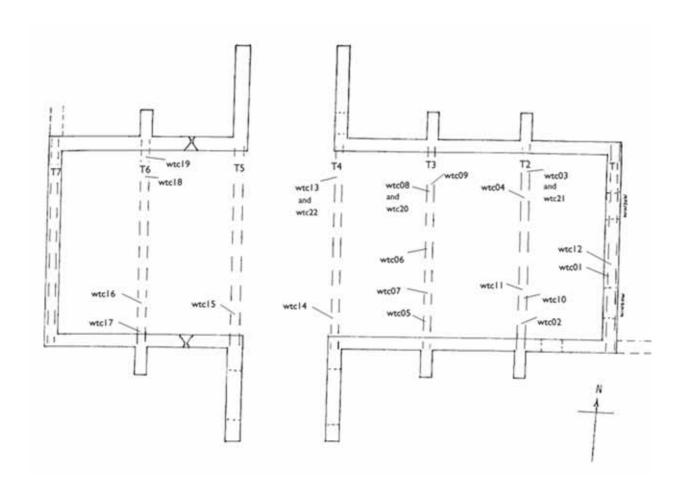


Figure 3: Plan of the tithe barn at Winterborne Clenston, showing the approximate position of samples taken for dendrochronology, based on an original drawing by P Brerner

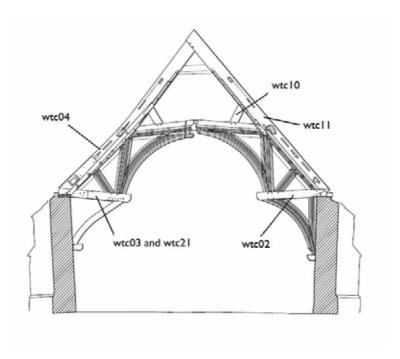


Figure 4: Drawing of truss 2, looking east, with sampled timbers indicated, adapted from an original by Nigel Fradgley

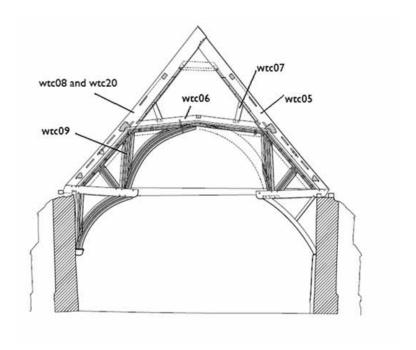


Figure 5: Drawing of truss 3, looking east, with sampled timbers indicated, adapted from an original by Nigel Fradgley

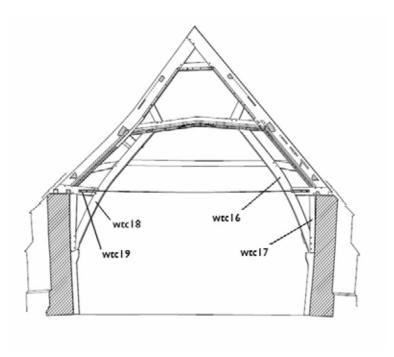


Figure 6: Drawing of truss 6, looking east, with sampled timbers indicated, adapted from an original by Nigel Fradgley



Figure 7: Photograph, looking north-east, showing the north-west side of truss 4, with the hammer beam sampled twice indicated (Martin Bridge)

Table 1: Details of oak (Quercus spp) timbers sampled from Manor Farm Barn, Winterborne Clenston, Dorset. Trusses are numbered from the east end. Key: HW = heartwood; Mean sens = mean sensitivity; H/S = heartwood/sapwood boundary; C = complete sapwood

Sample	Timber and position	No of	Mean HW	Mean overall	Mean	Dates AD	H/S bdry	Sapwood	Likely felling date
number		rings	ring width	ring width	sens	spanning	AD	complement	ranges (AD)
			(mm)	(mm)	(mm)				
wtc01	East end tie (tie 1)	94	1.84	1.84	0.15	1417–1510	1510	H/S	1519–51
wtc02a	South hammer beam, truss 2	74	1.73	1.73	0.23	1412–85	-	-	
wtc02b	ditto	55	1.56	1.56	0.25	1453-1507	1507	H/S	
wtc02	Mean of 02a and 02b	96	1.74	1.74	0.22	1412–1507	1507	H/S	1516–48
wtc03a	North hammer beam, truss 2	58	2.37	2.37	0.19	1439–96	-	-	
wtc03b	ditto	56	1.83	1.79	0.20	1451-1506	1501	5	
wtc21	ditto	37	1.85	1.85	0.17	1458–94	-	-	
wtc2103	Mean of 03a, 03b, and 21	68	2.30	2.23	0.18	1439–1506	1501	5	1510–42
wtc04	North principal rafter, truss 2	68	2.57	2.57	0.20	1394–1461	1461	H/S	1470-1502
wtc05	South principal rafter, truss 3	75	2.22	2.18	0.20	1401–75	1470	5	1479–1511
wtc06	Collar, truss 3	53	3.08	3.08	0.18	undated	-	H/S?	unknown
wtc07	Added brace, truss 3	<40	NM	NM	-	-	-	-	unknown
wtc08	North principal rafter, truss 3	97	1.93	1.93	0.18	1375–1471	1471	H/S + 31mmC	c1487
wtc20	ditto	80	1.92	1.92	0.20	1382-1461	-	-	
wtc2008	Mean of 08 and 20	97	1.92	1.92	0.17	1375–1471	1471	H/S + 31mmC	c1487
wtc09	North hammer post, truss 3	72	1.71	1.69	0.19	1398-1469	1468	I	1477-1509
wtc10	South brace, truss 2	84	1.75	1.75	0.24	1412–95	1495	H/S	1504–1536
wtcll	South principal rafter, truss 2	43	3.91	3.91	0.18	undated	-	H/S	unknown
wtc12	South principal rafter, truss I	119	1.69	1.69	0.17	1339–1457	1455	2	1464–96
wtc13	North hammer beam, truss 4	60	1.57	1.57	0.21	1450-1509	1509	H/S + 20NM	1529–50
wtc22	ditto	93	1.57	1.64	0.22	1443-1535	1510	25 + <2mmC	c1536–9
wtc2213	Mean of 13 and 22	93	1.57	1.64	0.22	1443–1535	1510	25 +<2mmC	c1536–9
wtc14	South hammer beam, truss 4	101	1.59	1.59	0.24	1404-1504	1503	I	1512–44
wtc15a	South hammer beam, truss 5	49	1.97	1.97	0.28	1465-1513	1513	H/S	
wtc15b	ditto	60	2.82	2.82	0.17	1430–89	-	-	
wtc15	Mean of 15a and 15b	84	2.46	2.46	0.21	1430-1513	1513	H/S	1522–54

Table 1 continued.

Sample	Timber and position	No of rings	Mean HW ring	Mean overall	Mean sens	Dates AD	H/S bdry	Sapwood	Likely felling date
number			width (mm)	ring width (mm)	(mm)	Spanning	AD	complement	ranges (AD)
wtc16	South cruck, truss 6	58	2.89	2.85	0.24	1454–1511	1509	2	1518–50
wtc17	South post, truss 6	83	2.20	2.19	0.19	1433–1515	1513	2	1522–54
wtc18	North cruck, truss 6	43	3.88	3.79	0.23	1467-1509	1507	2	1516–48
wtc19	North cruck spur, truss 6	103	1.36	1.34	0.18	1406–1508	1505	3	1514–46

Table 2a: Cross-matching between dated samples from the upper levels of the roof, values above 3.5 are statistically significant

	<i>t</i> -values								
Sample no	wtc05	wtc2008	wtc09	wtc12					
wtc04	6.6	3.4	3.4	3.0					
wtc05		3.3	4.6	3.7					
wtc2008			4.2	3.8					
wtc09				4.5					

Table 2b: Cross-matching between the timbers of the hammer beams and east tie beam, values above 3.5 are statistically significant

			<i>t</i> -values		
Sample no	wtc02	wtc2103	wtc2213	wtc14	wtc15
wtc01	3.1	5.9	2.8	1.8	2.8
wtc02		2.1	1.9	4.1	1.8
wtc2103			3.5	3.3	3.7
wtc2213				7.9	3.3
wtc14					2.8

Table 2c: Cross-matching between the timbers from Truss 6, along with the lone brace to truss 2, positions marked * have too small an overlap to justify calculating a t value

	<i>t</i> -values									
Sample no	wtc16	wtc17	wtc18	wtc19						
wtc10	4.0	4.5	*	3.8						
wtc16		4.1	*	3.5						
wtc17			*	3.2						
wtc18				*						

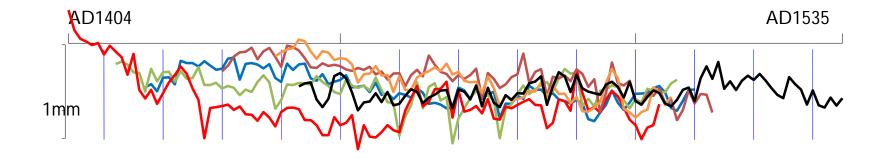


Figure 8: Plots of the ring width series from the hammer beams and the east end tie showing their overall similarities. The x axis is time in years, divided into decades by the vertical dotted lines, the y axis is the ring width in mm plotted on a logarithmic scale

Table 3: Highest matches for each individual dated series

Sample	Last year AD	<i>t</i> -value	No of years overlap	Chronology name	Short reference
no wtc01	1510	6.9	94	WGATEI	(Tyers and Wilson 2000)
WLCOT	1310	6.8	94	NUFF	(Haddon-Reece <i>et al</i> 1989)
wtc02	1507	5.4	96	WCCLOSE3	(Miles <i>et al</i> 2003)
WICUZ	1307	5.3	96	TFDEANE	(Miles et al 2005)
. 2102	1507				,
wtc2103	1506	6.5	68	HANTS02	(Miles 2003)
. 22.12	1500	6.2	68	KNWESQ01	(Howard <i>et al</i> 2006)
wtc2213	1509	6.0	93	OVERTON7	(Miles et al 2005)
		5.6	93	CLRENDN7	(Miles et al 2004)
wtc14	1504	6.9	96	BREMOREI	(Miles and Haddon-Reece 1996)
		5.7	101	CL_QMF2	(Tyers and Groves 1999)
wtc15	1513	7.7	84	SYDMNTNI	(Miles <i>et al</i> 2005)
		6.0	61	HEMINGTN	(Miles and Worthington 2002)
wtc16	1511	7.3	58	HFCASQ01	(Amold <i>et al</i> 2003)
		7.1	58	KNWESQ01	(Howard <i>et al</i> 2006)
wtc17	1515	6.1	83	HANTS02	(Miles 2003)
		5.8	83	ACTON	(Haddon-Reece and Miles 1994)
wtc18	1509	5.7	43	BRRYCTFM	(Miles <i>et al</i> 2003)
		4.9	43	SKYERSFM	(Miles <i>et al</i> 2004)
wtc19	1508	5.6	103	WHANNEY	(Miles <i>et al</i> 2005)
		5.6	99	OVERTON2	(Miles and Haddon-Reece 1994)
wtc04	1461	5.8	68	BLCKCANN	(Miles et al 2004)
		6.5	68	OVERTON5	(Miles and Worthington 2002)
wtc05	1475	7.0	75	LHM2	(Miles and Worthington 1999)
		6.2	75	SYDMNTNI	(Miles <i>et al</i> 2005)
wtc2008	1471	5.8	84	HOLYWELL	(Miles <i>et al</i> 2010)
		5.7	97	GROVEFM	(Miles and Worthington 1998)
wtc09	1469	6.6	72	SYDMNTNI	(Miles <i>et al</i> 2005)
		5.7	72	DITTON4	(Miles <i>et al</i> 2004)
wtc12	1457	6.3	85	BURCLER2	(Miles <i>et al</i> 2005)
		5.3	119	VYNECOTT	(Miles and Worthington 2000)
wtc10	1495	8.3	84	SOMRST04	(Miles 2004)
		6.6	84	EXMED	(Mills 1988)

Table 4: Highest matches for a site chronology WINTCLEN, AD 1339–1535, produced by combining all the dated timbers

U	3)	•	,	U		
County/	Chronology name:	Short publication reference:	File name:	Spanning:	Overlap	<i>t</i> -value
region:				(yrs AD)	(yrs)	
Hampshire	Hampshire master	(Miles 2003)	HANTS02	443-1972	197	10.2
Hampshire	Sydmonton Court, Kingsclere	(Miles <i>et al</i> 2005)	SYDMNTNI	1383-1529	147	9.4
Hampshire Ω	St Olaf's Pond Cottage, Wonston	(Miles and Worthington 1997)	STOLAFS	1376-1535	160	8.3
Hampshire	10 The Close, Winchester	(Miles <i>et al</i> 2003)	WCCLOSE3	1388-1528	141	8.0
Hampshire	St Mary and St Ethelflaeda, Romsey	(Hillam and Groves 1994)	ROMSEY	1362-1496	135	8.0
Somerset	Somerset Master Chronology	(Miles 2004)	SOMRST04	770-1979	197	8.0
Wiltshire	Salisbury Cathedral	(Miles <i>et al</i> 2005)	SARUMII	1409-1541	127	7.7
Hampshire Ω	Huntingford Cottage, Headley	(Miles and Worthington 2002)	HUNTNFRD	1420-1565	116	7.6
Hampshire Ω	Mottisfont Abbey	(Miles 1996)	MOTISFNT	1388-1538	148	7.5
Somerset	Taunton Castle	(Miles and Bridge 2010)	TAUNTCA	1380-1479	100	7.4
0 =	CLIANITCOO		•			

 $[\]Omega$ = constituent of HANTS02

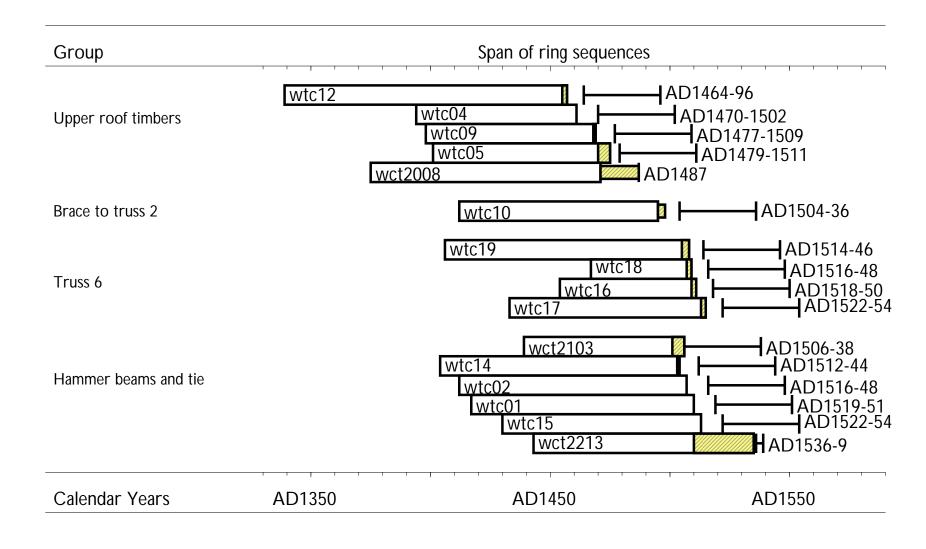


Figure 9: Bar diagram showing the relative positions of overlap of the dated timbers and their likely felling date ranges. White bars represent heartwood rings, yellow hatched bars sapwood, and narrow sections represent unmeasured additional sapwood rings

BIBLIOGRAPHY

Arnold, A J, Laxton, R R, and Litton, C D, 2003 *Tree-ring analysis of timbers from Forbury Chapel, Church Street, Leominster, Herefordshire*, Centre for Archaeol Rep, 18/2003

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Haddon-Reece, D, Miles, D H, and Munby, J T, 1989 List 32 - Tree-ring dates, *Vernacular Architect*, **20**, 46–9

Haddon-Reece, D, and Miles, D W H, 1994 *The tree-ring dating of Acton Court, Avon*, Anc Mon Lab Rep, 11/1994

Hillam, J, and Groves, C, 1994 *Tree-ring analysis of oak timbers from the bell tower of the Abbey Church of St Mary and St Ethelflaeda, Romsey, Hampshire*, Anc Mons Lab Rep, **24/1994**

Hollstein, E, 1965 Jahrringchronologische von Eichenholzern ohne Walkande, *Bonner Jahrbuecher*, 165, 12–27

Howard, R E, Litton, C D, and Arnold, A J, 2006 *Tree-ring analysis of timbers from Lord Leicester's Stables, Kenilworth Castle, Warwickshire*, EH Research Dept Rep Ser, 21/2006

Miles, D H, 1996 *The tree-ring dating of Mottisfont Abbey, Romsey, Hampshire*, Anc Mon Lab Rep, **23/1996**

Miles, D, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Miles, D, 2003 Dating Buildings and Dendrochronology in Hampshire, in Hampshire Houses 1250 - 1700: Their Dating and Development (ed E Roberts), 220–6, Southampton (Hampshire County Council)

Miles, D H, 2004 unpubl Oxford Dendrochronology Laboratory, Working compilation of reference chronologies centred around Somerset by various researchers, unpubl computer file *SOMRST04*

Miles, D W H, 2005 New Developments in the Interpretation of Dendrochronology as Applied to Oak Building Timbers, unpubl DPhil thesis, Hertford College, Oxford Univ

Miles, D H, and Haddon-Reece, D, 1994 List 56 - Tree-ring dates, *Vernacular Architect*, **25**, 28–36

Miles, D H, and Haddon-Reece, D, 1996 List 72 - Tree-ring dates, *Vernacular Architect*, **27**, 97–102

Miles, D H, and Worthington, M J, 1997 Tree-ring dates, Vernacular Architect, 28, 159–81

Miles, D H, and Worthington, M J, 1998 Tree-ring dates, Vernacular Architect, 29, 111–29

Miles, D H, and Worthington, M J, 1999 Tree-ring dates, Vernacular Architect, 30, 98–113

Miles, D H, and Worthington, M J, 2000 Tree-ring dates, Vernacular Architect, 31, 90–113

Miles, D H, and Worthington, M J, 2002 Tree-ring dates, Vernacular Architect, 33, 81–102

Miles, D H, Worthington, M J, and Bridge, M C, 2003 Tree-ring dates, *Vernacular Architect*, **34**, 109–113

Miles, D H, Worthington, M J, and Bridge, M C, 2004 Tree-ring dates, *Vernacular Architect*, **35**, 95–113

Miles, D H, Worthington, M J, and Bridge, M C, 2005 Tree-ring dates, *Vernacular Architect*, **36**, 87–101

Miles, D H, and Bridge, M C, 2010 Tree-ring dates, Vernacular Architect, 41, 102–5

Miles, D H, Worthington, M J, Bridge, M C, Suggett, R, and Dunn, M, 2010 Tree-ring dates, *Vernacular Architect*, **41**, 110–18

Mills, C M, 1988 *Dendrochronology of Exeter and its application*, unpubl PhD thesis, Sheffield Univ

Salzman, LF, 1952 Building in England down to 1540, Oxford

Tyers, I, 2004 Dendro for Windows program guide 3rd edn, ARCUS Rep, 500b

Tyers, I, and Groves, C, 1999 Tree-ring dates, Vernacular Architect, 30, 113–28

Tyers, I, and Wilson, R, 2000 *Tree-ring analysis of oak timbers from 66 and 68 Westgate Street, Gloucester*, Anc Mon Lab Rep, 19/2000

APPENDIX

Ring width values (0.01mm) for the sequences measured

wtc01 174 326 275 240 146 116 84 131 121 100	189 294 304 189 152 106 119 126 102 127	159 266 219 200 132 109 118 119 122 165	220 273 199 208 152 174 143 130 150	222 347 308 234 146 163 133 119	188 355 265 175 137 133 182 82 154	329 210 302 177 171 165 164 78	312 307 308 182 154 133 166 96 181	312 312 217 156 118 147 142 116 155	288 301 205 195 121 158 152 162 107
wtc02 305 200 173 185 183 114 135 149 133 169	323 258 145 194 172 197 160 167 111	301 215 166 193 183 106 153 184 161	250 218 157 186 162 177 144 199 166 156	247 283 199 229 221 193 128 159 184 192	158 185 233 199 164 128 52 217 176 210	272 185 197 181 123 139 104 271 129	202 195 105 156 120 46 117 242 106	250 170 129 149 55 83 150 251	254 181 187 209 87 106 182 112
wtc03 366 336 158 223 121 122 96	403 351 219 234 132 144 85	432 344 163 180 134 104 97	445 303 165 180 163 111 103	546 196 217 169 163 114 175	525 239 241 132 191 132 156	412 243 255 197 131 195 115	345 290 283 145 176 272 140	414 232 249 103 141 217	401 249 308 144 152 105
wtc04 247 327 278 297 207 147 243	313 259 291 274 212 232 209	428 343 166 224 252 183 219	328 330 168 162 435 230 206	242 401 274 277 281 289 200	283 252 183 176 230 260 184	373 226 310 217 220 249 178	402 202 281 240 231 265 189	302 337 186 286 215 235	317 370 283 247 159 193
wtc05 374 181 256 237 179	306 238 238 273 188	250 319 285 203 205	271 288 236 205 141	238 253 196 257 249	321 167 166 287 173	303 234 164 393 229	377 289 288 271 232	275 149 236 211 229	251 210 189 196 152

182 148 205	198 138 209	145 194 180	149 122 124	150 134 137	179 170	207 182	162 155	222 173	240 217
wtc06 893 265 257 369 203 208	1177 456 246 246 267 306	903 393 253 269 242 299	325 438 208 265 206	307 263 148 271 242	271 169 206 230 286	312 161 203 214 249	364 168 274 208 248	338 260 350 223 255	322 221 400 279 210
wtc08 253 247 213 217 185 167 168 157 126 135	190 290 214 234 169 161 183 151 125 144	179 228 180 262 128 156 248 166 123 159	209 297 189 245 264 224 138 136 158	224 213 249 320 197 165 101 167 139 153	289 261 321 255 203 157 163 116 136 188	286 202 270 180 153 156 135 193 124 185	197 199 233 243 207 159 176 140	226 239 156 256 260 130 186 186 153	230 201 236 227 219 138 179 170 133
wtc09 468 230 351 187 133 100 96 104	468 312 208 166 85 103 104 79	394 183 211 134 90 105 83	263 137 177 142 84 116 89	242 166 189 129 75 95 80	269 206 224 130 84 138 117	310 272 252 119 76 142 91	339 233 211 141 95 116 103	294 158 155 128 107 157 124	286 182 103 146 113 121 82
wtc10 82 55 113 207 197 178 194 150	94 147 127 281 247 254 193 101 121	114 135 68 266 317 135 184 148	104 122 207 234 283 131 263 176 197	81 105 318 379 259 211 134 143	84 68 298 321 294 217 62 166	96 102 231 211 235 186 110	68 90 255 232 189 171 117 159	105 79 216 255 228 197 129 201	81 106 275 232 167 177 142 167
wtc11 494 564 529 364 340	536 266 407 321 354	550 326 506 331 248	527 335 451 390	553 359 416 333	627 363 355 348	398 307 271 323	483 297 233 285	490 376 360 356	294 501 252 386

wtc12									
374 313 209 138 194 143 161 138 110 121 94 116	489 230 213 205 159 152 227 139 85 88 112 109	401 279 267 138 169 156 248 118 124 120 122 141	420 217 168 125 143 148 171 152 142 139 153	312 215 174 178 148 161 160 193 193 126 123 139	265 232 149 147 143 150 159 198 109 91	247 175 138 191 214 165 159 146 142 128 100 150	234 200 152 224 258 152 183 102 95 110 118	229 198 113 129 174 147 206 99 83 91 139 133	282 169 125 145 200 148 138 133 105 108 132
wtc13 246 110 168 154 240 130	208 137 162 154 187 117	145 162 131 194 154 141	101 157 185 207 143 163	128 126 118 229 145 158	132 134 177 115 167 122	156 146 120 175 200 111	122 164 100 257 187 125	151 166 139 236 147 164	111 107 122 158 205 176
wtc14 1103 236 242 92 80 71 111 94 114 96 117	683 388 171 91 80 54 124 132 66 131	556 164 130 79 71 53 167 83 75 161	522 134 52 97 56 60 169 81 131	479 165 107 85 56 71 200 111 126 108	504 118 109 69 86 63 85 106 100 81	383 152 112 97 71 60 163 115 266 71	472 196 116 107 75 100 98 124 154 51	410 235 102 108 90 134 102 132 101 67	360 288 111 104 40 181 112 115 109 71
wtc15 257 285 290 245 234 239 269 127 119	293 473 268 180 214 392 241 115 149	365 457 259 234 234 195 177 151	403 421 278 266 273 253 212 143 96	409 351 266 227 135 270 98 170	450 282 286 373 246 142 154 120	341 278 238 300 214 225 316 132	413 310 255 253 172 217 194 80	448 291 211 241 188 232 183 102	362 299 243 203 223 203 205 164
wtc16 459 235 308 531 246 190	340 324 371 357 260 215	415 470 329 268 373 116	390 442 207 270 288 93	446 543 297 233 148 133	286 297 468 186 178 143	436 325 384 268 130 151	320 267 365 148 107 167	302 236 292 187 137	381 251 418 197 185

13 - 2014

wtc17									
357 223 186 237 186 255 170 189	278 238 197 183 207 258 214 180 206	321 211 171 262 235 188 253 194 224	385 184 194 264 188 296 362 129	351 242 138 237 107 312 235 148	256 163 174 203 243 266 193 184	228 216 201 253 249 243 174 240	241 174 241 195 212 259 202 177	245 173 191 247 327 175 162 163	194 179 178 188 294 188 200 184
wtc18									
701 283 285 400 331	72 I 4 I I 242 248 173	531 561 267 265 187	453 479 266 242	364 392 226 275	442 490 206 326	537 427 391 377	537 380 290 357	606 223 284 612	523 247 465 256
wtc19									
465 171 134 149 119 87 72 41 108 182 68	516 117 145 189 109 85 74 37 94 151 57	348 271 178 151 79 74 52 57 86 141 72	307 224 199 83 88 68 43 82 98 172	399 275 153 65 82 62 79 86 78 101	352 197 156 98 76 71 85 92 65 119	236 191 135 97 96 68 95 97 64 160	259 239 149 95 69 80 86 88 69 166	213 220 161 99 84 62 77 91 118 157	212 198 169 97 67 68 74 101 117 168
wct20									
197 161 247 351 164 185 125	218 245 152 211 194 128 208 163	187 199 235 151 185 162 200 168	227 253 203 119 152 186 144 204		235 185 232 124 127 269 157 153	161	111 150	223 215 347 207 126 136 147 128	204 251 253 156 147 157 181 148
	156 251 133 118	236 272 132 134	230 143		225 232 154 102	199		280 200 188	269 122 158
101 157	192 116 114 104 225	197 118 141 169 116	131 148 148 122 185	109 124 161 118 245	133 163 163 151 218	229 118 105 138 155	247 127 164 151 231	226 150 154 149 155	166 172 132 193 163

161	150	208	200	168	127	195	123	116	138
163	149	117	112	135	167	173	126	217	289
214	321	169	202	164	205	231	209	241	206
172	146	135	223	189	166	116	163	114	108
137	113	135							

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT

English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage.org.uk/professional/protection/national-heritage-protection-plan/.

The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

- * Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
- * Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
- * Imaging and Visualisation (including Technical Survey, Graphics and Photography)
- * Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.

We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports

For further information visit www.english-heritage.org.uk

