DEWAR'S LANE GRANARY, BERWICK-UPON-TWEED, NORTHUMBERLAND TREE RING ANALYSIS OF TIMBERS

SCIENTIFIC DATING REPORT

Alison Arnold, Robert Howard, and Cathy Tyers

ARCHAEOLOGICAL SCIENCE

Research Department Report Series 24-2008

DEWAR'S LANE GRANARY, BERWICK-UPON-TWEED, NORTHUMBERLAND

TREE RING ANALYSIS OF TIMBERS

A J Arnold, R E Howard, and C Tyers

NGR NT99815274

© English Heritage

ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey; and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers are advised to consult the author before citing these reports in any publication. Opinions expressed in Research Department Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: <u>Res.reports@english-heritage.org.uk</u>.

or by writing to English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

Dendrochronological analysis was undertaken on 51 samples taken from oak and pine timbers of this building. Site sequence BWKASQ03 was successfully dated to the period AD 1701–1825. This site sequence contains four pine samples, one from the central framework, one from the west framework, and two from floor joists. All four samples have last measured ring dates in the first quarter of the nineteenth century, showing that none of them relate to the likely original construction of the building in the mid to late-eighteenth century. They appear broadly coeval and it is likely that they are associated with the post-AD 1829 reconstruction, following a fire in AD 1815. The likely source of these timbers is Scandinavian, possibly south-east Norway. Although a number of other small groups of timbers were identified none of the resultant site sequences, either oak or pine, could be successfully dated.

CONTRIBUTORS

Alison Arnold, Robert Howard, and Cathy Tyers

ACKNOWLEDGEMENTS

The Laboratory would like to thank John Smithson of the Berwick-upon-Tweed Preservation Trust for arranging access. Various dendrochronologists from Scandinavia and countries around the Baltic Sea have kindly either carried out cross-dating procedures or made reference data available. Reference data has also been obtained from the International Tree-Ring Data Bank based in Boulder, Colorado, funded by the National Geophysical Data Center (part of the World Data Center). The survey drawings, used in Figures 3–9, were produced by Bain, Swan Architects.

ARCHIVE LOCATION

Northumberland SMR; NTRDL

DATE OF INVESTIGATION

2006-7

CONTACT DETAILS

Alison Arnold and Robert Howard Nottingham Tree-ring Dating Laboratory 20 Hillcrest Grove Sherwood Nottingham NG5 IFT Cathy Tyers Sheffield Dendrochronology Laboratory University of Sheffield West Court 2 Mappin Street Sheffield ST 4DT

CONTENTS

Introdu	ction	
Samplin	g	I
Analysis	and Results	2
Oak sar	nples	2
Pine sar	nples	
Discussi	on and Conclusion	
Bibliogra	aphy	5
Tables		6
Figures		
Data of	Measured Oak Samples	25
Append	lix: Tree-Ring Dating	27
The Pri	nciples of Tree-Ring Dating	27
The Pra	ctice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laborator	y27
Ι.	Inspecting the Building and Sampling the Timbers.	27
2.	Measuring Ring Widths	
3.	Cross-Matching and Dating the Samples	32
4.	Estimating the Felling Date	
5.	Estimating the Date of Construction	34
6.	Master Chronological Sequences	34
7.	Ring-Width Indices	35
Referen	Ces	

INTRODUCTION

Dewar's Granary is located in the Northumberland town of Berwick upon Tweed (NT99815274; Fig I); to the east it faces Dewar's Lane and the west, an open yard which has access to the Quayside by a tunnel through the Quay Walls. The building measures *c* 38.7m by 8.7m and is constructed of roughly-coursed sandstone blocks. Since its erection, the whole building has developed a dramatic westward lean. With the exception of the blocking up of a number of windows, alterations to some of the ground-floor doorways, and the addition on the west elevation of three massive full height concrete buttresses to counteract the lean of the building, externally it does not appear to have been changed a great deal since construction. This construction is thought to have occurred in the mid-to-late eighteenth century, based on its similarity to a warehouse in Hull dated to AD 1745.

Internally, the building consists of four storeys plus attic. Each floor is supported by joists that span the full width of the building, their ends lodged within the east and west walls. These joists are supported mid-span by a central arcade, consisting of axial beams resting on timber pads and chamfered storey posts (replaced in steel at basement level and partly replaced at first-floor level). On or just inside the line of the internal face of each side wall there is a free-standing timber frame, of posts and rails, which also supports the floor joists (Fig 2). The 1991 RCHM(E) survey of the building concluded that the central structure was likely to be part of the original construction whilst the freestanding framework running along the inside of the walls was later, added in an attempt to strengthen it. The positioning of this latter timberwork is thought to demonstrate that the building had already begun to lean at its insertion, ie at basement level the posts of the eastern are set well clear of the wall, whilst those of the western are embedded in its face. However, documentary evidence uncovered since 1991 has shown that the Granary suffered a serious fire in December AD 1815, at which time the building was said to have been 'reduced to ashes'. If this is the case, it suggests that all the internal wooden structures seen today are likely to date to the post-AD 1829 reconstruction or later. The roof structure consists of paired rafters with collars and is thought to date to the early twentieth century. The above building description is based the surveys by Peter Ryder (Ryder 2004) and the RCHM(E) (1991).

SAMPLING

Prior to the discovery of documentation referring to the fire it was assumed that the central timberwork and floor joists were part of the original construction and that the timber frame along the inside of the walls was later, added in an effort to counteract the leaning of the building. Although it is now thought that all internal timberwork must post-date the fire AD 1815, it is still unclear whether it is all contemporary, dating to the post-AD 1829 reconstruction, or represents various phases of construction. As such, during sampling the different groups of timbers were treated as potentially separate phases. The posts, pads, and axial beams located along the centre of the building being one (the central framework), the posts and rails located just inside the walls being a second (the east and west framework), and the floor joists being a third.

Sampling and analysis by tree-ring dating was commissioned and funded by English Heritage. The building is being redeveloped by the Berwick-upon-Tweed Preservation Trust and tree-ring dating was requested by Catherine Dewar, Historic Areas Adviser at English Heritage's Newcastle office to inform a Listed Building Consent application. The purpose of the analysis was to produce dating evidence from the timbers that may aid the interpretation of the historical development of the building.

In addition, this structural assemblage was dominated by conifer timbers, and hence provided a good opportunity to further the English Heritage research programme on the dendrochronological analysis of conifers. This ongoing research project has, when the opportunity has arisen, been investigating the viability and value of analysing conifer timbers from historic contexts (Groves 2000). The primary aim is to extend the scope of British dendrochronology to allow the production of dating evidence for conifer structures, the timbers of which, according to documentary evidence, forest history and recent dendrochronological studies (eg Groves 2002, Groves and Locatelli 2005, Howard *et al* 2006), are most likely to have been imported. Successful analysis has the benefit of not only providing dating evidence for the building under investigation, but also information relating to the source of the timber and hence the trade in timber.

Due to the potential difficulties associated with the analysis of imported conifers (eg Groves 2000; Groves 2004), a more extensive sampling strategy is usually applied. With this in mind, and in accordance with the specifications of the brief a total of 53 timbers were sampled. Each sample was given the code BWK-A (for Berwick-upon-Tweed) and numbered 01–53. The majority of the timbers associated with the central framework are pine (*Pinus* spp) although some of the pads are oak (*Quercus* spp). Twenty-five of these central timbers were sampled, 19 pine (BWK-A03–18 and BWK-A20–22) and six oak (BWK-A26–31). The timbers of the eastern and western framework were also seen to be pine and 21 of these were sampled (BWK-A01–02, BWK-A13–53). Finally, seven of the joists, again all pine, were sampled (BWK-A01–02, BWK-A19, BWK-A23–5, and BWK-A42). The position of samples was noted at the time of sampling and has been marked on Figures 4–7. Further details relating to the samples can be found in Table 1. Timbers from all structures have been numbered from north to south.

ANALYSIS AND RESULTS

At this stage it was noticed that two of the samples (BWK-A48 and BWK-A51) taken from timbers of the east framework had too few rings to make secure dating a possibility and these samples was rejected prior to measurement. The remaining 51 samples were prepared by sanding and polishing and their growth-ring widths measured. The samples were divided into oak and pine and samples from each type compared with each other by the Litton/Zainodin grouping procedure (see Appendix). Oak sample measurements are given at the end of this report. As this analysis forms part of a wider research project to enable the dating of imported Baltic conifers in England, the ring series from the conifer timbers will be fully published and discussed as part of the final project publication.

Oak samples

At a least value of t=5.0, two groups had formed. Three samples matched each other and were combined at the relevant offset positions to form BWKASQ01, a site sequence of 152 rings (Fig 10). The remaining three oak samples matched each other and were combined at the relevant offset positions to form BWKASQ02, a site sequence of 305 rings (Fig 11). Attempts to date these two site sequences by comparing them against a

large number of reference chronologies for oak, both from this country and other north European countries, proved unsuccessful. Bearing in mind the potential date of these sequences they were also tested against available North American oak reference data.

Pine samples

At a least value of t=4.5, 33 samples had formed ten groups. Four samples matched and were combined at the relevant offset positions to form BWKASQ03, a site sequence of 125 rings (Fig 12). This site sequence was then compared against a series of relevant reference chronologies for pine where it was found to have a consistent match at a first-ring date of AD 1701 and a last-ring date of AD 1825. The evidence for this dating is given by the *t*-values in Table 2.

The other nine site sequences (Figs 13–21) formed from small groups of matching samples were also initially compared with an extensive range of European pine reference chronologies, including those available from Scottish sites, which consist of both native and imported timbers, and subsequently with chronologies from Canada and the north-eastern area of the United States of America. No satisfactory cross-matching was identified for these remaining site sequences, nor was there any conclusive cross-matching for any of the ungrouped pine samples.

Site Chronology	Species	No of	Rings	Date span/undated
		Samples		
BWKASQ01	Oak	3	152	Undated
BWKASQ02	Oak	3	305	Undated
BWKASQ03	Pine	4	125	AD 1701-1825
BWKASQ04	Pine	6	217	Undated
BWKASQ04	Pine	3	175	Undated
BWKASQ05	Pine	5	119	Undated
BWKASQ06	Pine	4	145	Undated
BWKASQ07	Pine	2	79	Undated
BWKASQ08	Pine	2	164	Undated
BWKASQ09	Pine	3	175	Undated
BWKASQ10	Pine	2	148	Undated
BWKASQ11	Pine	2	188	Undated
BWKASQ12	Pine	3	143	Undated

Details of all site sequences constructed:

DISCUSSION AND CONCLUSION

The tree-ring analysis has successfully dated only four of the pine timbers, one from the central framework (a fourth floor post), one from the west framework (again a fourth floor post), and two floor joists, one from the fourth floor and one from the first floor. Unfortunately, none of the samples have complete sapwood so it is not possible to prove whether all four represent a single felling. Given the great variation in number of sapwood rings in pine trees (eg Zetterberg and Hiekkanen 1990; Howard *et al* 2006), it is also not possible to calculate a felling date range, as would be the norm for oak, for these timbers. It can be said, however, that these samples are broadly coeval and, with all four having last measured sapwood ring dates in the nineteenth century, that none of them can be from the original mid-to-late eighteenth-century construction but that they probably all post-

date the AD 1815 fire. Although it has therefore been possible to demonstrate the presence of some nineteenth-century timber likely to be associated with the post-AD 1829 reconstruction, the lack of dating evidence for the majority of the timber framework prevents the dendrochronological analysis showing whether or not the entire internal timber framework is the product of a single felling and construction event. The site sequence BWKASQ03 matches well against reference chronologies from south-east Norway, suggesting that these four timbers may have originated in this part of Europe (Table 2). This has the additional benefit of confirming that they are also therefore Scots Pine (*Pinus sylvestris* L.).

The failure to date any of the other pine samples is clearly disappointing, particularly in the light of the recent successes with various conifer assemblages (eg Howard et al 2006, Arnold et al 2007). However, dendrochronological dating of conifer timber in this country is in its infancy and the lack of success here should not be regarded as discouraging. One of the potential problems with the material from Dewar's Lane Granary is the possibility that the material represents multiple sources, as reflected in the number of small groups of cross-matched samples, and may also incorporate material of different date. This clearly hampers the successful production of well-replicated, and hence more readily dateable, site sequences. Erratic growth patterns where the ring widths change suddenly, either becoming very narrow or very wide, will also reduce the dating potential. Conifers, in particular, are subject to 'missing rings' where a tree either lays down a partial ring or fails to grow at all, false/shadow rings, and rings that wedge out (Schweingruber 1988, 47), all of which reduce the chances of successful cross-matching. Whilst the measured ring sequences and samples have been systematically checked for these potential measurement difficulties, it remains a possibility that at least some of the sequences could have unrecognised problems.

Although neither of the oak site sequences is particularly well-replicated both are long ring sequences which would ordinarily have been expected to have a reasonable chance of being dated successfully. It may be that the trees involved were subject to non-climatic growing conditions which have unduly influenced the growth pattern decreasing the dating potential. The oak samples were certainly derived from very slow grown trees with average ring widths ranging from 0.65mm to 1.08mm but they don't particularly suffer from erratic growth patterns. However, it is notable that very little oak reference data exists for the post-medieval period in this region and it remains a possibility that the oak timbers are imported from an area for which reference data is not readily available. The Laboratory have encountered difficulty in the past when trying to date timbers from the north-east of the country thought likely to be post-medieval in date (ie Mount Grace Priory Guesthouse, Arnold *et al* 2004; Ripon Cathedral, Arnold *et al* 2005).

BIBLIOGRAPHY

Arnold, A J, Howard, R E, and Litton, C D, 2004 *Tree-ring analysis of timbers from Mount Grace Priory Guesthouse, Saddle Bridge, Northallerton, North Yorkshire*, Centre for Archaeol Rep, **40/2004**

Arnold, A J, Howard, R E, and Litton, C D, 2005 *Tree-ring analysis of timbers from the nave roof and ceiling of the Cathedral Church of St Peter and St Wilfred, Ripon, North Yorkshire*, Centre for Archaeol Rep, **44/2005**

Arnold, A J and Howard, R E, 2007 *Durham Cathedral, Durham: Tree-ring Analysis of Timbers from the Refectory and the Librarian's Loft*, Centre for Archaeol Rep, **39/2007**

Arnold, A J, Howard, R E, and Tyers, C, forthcoming *Tree-ring analysis of timbers from Millers House, Bromley-by-Bow*, EH Res Dep Rep Ser

Briffa, K R, Wigley, T M L, Jones, P D, Pilcher, J R and Hughes, M K, 1986 *The reconstruction of past circulation patterns over Europe using tree-ring data*, final report to the Commission of European Communities, contract no CL.111.UK(H), unpubl rep

Groves, C, 2000 Belarus to Bexley and beyond: dendrochronology and dendroprovenancing of conifer timbers, *Vernacular Architect*, **31**, 59–66

Groves, C, 2002 *Dendrochronological analysis of conifer timbers from Danson House and Danson Stables, Bexley, Kent*, Centre for Archaeol Rep, **69/2002**

Groves, C, 2004 *Dendrochronological analysis of conifer timbers from the Giltspur Street Compter, City of London (KEW98)*, Centre for Archaeol Rep, **20/2004**

Groves, C, and Locatelli, C, 2005 *Tree-ring analysis of conifer timbers from 107 Jermyn Street, City of Westminster, London*, Centre for Archaeol Rep, **67/2005**

Howard, R E, Litton, C D, Arnold, A J, and Tyers, C, 2006 *Tree-ring analysis of timbers from Warleigh House, Tamerton Foliot, Bickleigh, South Hams, near Plymouth, Devon,* EH Res Dep Rep Ser, **38/2006**

RCHM(E), 1991 Historic Building Report: The Granary, Dewar's Lane, Berwick-upon-Tweed, Northumberland, Royal Commission on Historical Monuments (England)

Ryder, P F, 2004 unpubl Dewar's Lane Granary Berwick upon Tweed: An Archaeological Assessment

Schweingruber, F H, 1988 Tree Rings, Dordrecht

Tyers, C, and Tyers, I, forthcoming *Godolphin House, Godolphin Cross, Cornwall:* scientific dating report – tree-ring analysis of timbers, EH Res Dep Rep Ser

Zetterberg, P and Hiekkanen, M, 1990 Dendrochronological studies on the age and construction phases of the medieval stone church of Sipoo (Sibbo), southern Finland, *Finska Fornminnesforeningen*, **97**, 87–98

Table I: D	etails of tree-ring samples from Dewar's Granary,	Berwick-	-upon- Tweed	d, Northumberland		
Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Central frame	work (pine)					
4th Floor						
BWK-A03	Post 2	108	58	10/1	1750	1808
BWK-A04	Post 6	94	21			
BWK-A05	Axial beam, 2–3	61	36C			
3rd Floor						
BWK-A06	Post 9	125	ł			
BWK-A07	Post 10	166	-			
BWK-A08	Axial beam, 5–6	173	26			
BWK-A09	Axial beam, 7–8	163	02			
BWK-A10	Axial beam, 9–10	137	ł			
BWK-AII	Pad 10	102	42			
2nd Floor						
BWK-A12	Post I	140	28			
BWK-A13	Post 8	206	38			
BWK-A14	Post 5	344	75			
BWK-A15	Axial beam, 1–2	94	41C			
BWK-A16	Axial beam, 3–4	117	05			
BWK-A17	Post 3	129	-			
BWK-A18	Post 4	102	60			
l st Floor						
BWK-A20	Axial beam, 6–7	126	29C			
BWK-A21	Axial beam, 5–6	105	80			
BWK-A22	Axial beam, 3–4	166	31			

TABLES

Central frame	work (oak)				
4th Floor BWK-A26 BWK-A27	Pad 4 Pad 9	66 179	- 1	 	
3rd Floor BWK-A28 BWK-A29	Pad I Pad 7	199 122	02 09	 	1 1
2nd Floor BWK-A30 BWK-A31	Pad 11 Pad 2	100 201	1 1	 	
East and Wes	t framework (pine)				
4th Floor					
BWK-A32	East post 3	58	27	-	
BWK-A33	East post 4	86 201	24		
bwk-a34 Bwk-a35	west post 11 East post 9	103 108	41 75C	 /84 	
3rd Floor					
BWK-A36	East post 4	55	7	 	
BVVK-A3/ BVVK-A38	West post / West post 9	132 112	33 33	 	
BWK-A39	West post 10	93	12	 	
BWK-A40	West rail, 9–10	76	-14	 	
BVVK-A41	East rail, 3–4	14/	1	 	
2nd Floor					
BWK-A43	West post 2	81	05	 	
BWK-A44	East rail, 3–4	=	20	 	
BWK-A45	East post 4	60	ł	 	
BWK-A46	East post 8	124	45	 	
BWK-A47	East rail, 2–3	75	1	 	

BWK-A48	East post 9	ΣZ	-			
BWK-A49	West post 10	601	22			
BWK-A50	West post I	60	16			
l st Floor						
BWK-A51	East rail, 9–10	ΣZ	1			
BWK-A52	West post 8	62	-			
BWK-A53	East rail, 7–8	61	33			-
Joists						
4th Floor						
BWK-A01	Common joist 6 (from north)	55	04			
BWK-A02	Common joist 5 (from north)	93	29	1716	1779	1808
3rd Floor						
BWK-A42	West joist 46	104	46			
l st Floor						
BWK-A19	Common joist 35	72	43			
BWK-A23	East joist 41	162	52C			
BWK-A24	East joist 39	98	27C			
BWK-A25	West joist 34	68	39	1738	1766	1805

*NM = not measured **h/s = the heartwood/sapwood ring is the last ring on the sample C = complete sapwood retained on sample, last measured ring is the felling date

Reference chronologyFerenceFvalueSpan of chronologyReferenceNorway Jondalen7.04AD 1605–1981Briffa <i>et al</i> 1986Norway Jondalen7.04AD 1001–1852Bartholin pers commSweden Dalarna7.04AD 1001–1852Bartholin pers commNorway Hurdal6.93AD 1678–1981Briffa <i>et al</i> 1986Norway south-east6.93AD 1678–1981Briffa <i>et al</i> 1986Norway south-east6.49AD 1678–1986Thun pers commUK Imports:6.69AD 1604–1773C Tyers pers commWallace Collection, London6.57AD 1604–1773C Tyers pers commMillere House Bornleich6.57AD 1604–1773C Tyers pers commMillere House Bornleich6.57AD 1604–1773Anold <i>at al forthcom</i>					
Norway Jondalen 10.66 AD 1605–1981 Briffa et a/ 1986 Sweden Dalama 7.04 AD 1001–1852 Bartholin pers comm Sweden Dalama 7.04 AD 1001–1852 Bartholin pers comm Norway Hurdal 6.93 AD 1678–1981 Briffa et a/ 1986 Norway south-east 6.93 AD 1678–1981 Briffa et a/ 1986 Norway south-east 6.49 AD 871–1986 Thun pers comm UK Imports: AD 871–1986 Thun pers comm UK Imports: 6.69 AD 1604–1773 C Tyers pers comm Outcible Works, Sheffield 6.57 AD 1604–1773 C Tyers pers comm Millere House Bromley by Bow London 6.16 AD 1607–1723 Amold af 3/forthrow	Reference chronology	<i>t</i> -value	Span of chronology	Reference	
Sweden Dalama 7.04 AD 1001–1852 Bartholin pers comm Norway Hurdal 6.93 AD 1678–1981 Briffa <i>et al</i> 1986 Norway south-east 6.49 AD 871–1986 Thun pers comm UK Imports: 6.49 AD 1604–1773 C Tyers pers comm UK lance Collection, London 6.69 AD 1604–1773 C Tyers pers comm Millere House Romley by Row London 6.57 AD 1604–1773 C Tyers pers comm	Norway Jondalen	10.66	AD 1605-1981	Briffa et al 1986	
Norway Hurdal6.93AD 1678–1981Briffa et al 1986Norway south-east6.49AD 871–1986Thun pers commUK Imports:6.49AD 1604–1773C Tyers pers commUK Imports:6.69AD 1604–1773C Tyers pers commMillere House Roomley by Row London6.57AD 1650–1804I Tyers pers commMillere House Roomley by Row London6.57AD 1601–1763Amold at al/forthcom	Sweden Dalarna	7.04	AD 1001-1852	Bartholin pers comm	
Norway south-east6.49AD 871–1986Thun pers commUK Imports:UK Imports:6.69AD 1604–1773C Tyers pers commWallace Collection, London6.57AD 1604–1773C Tyers pers commCrucible Works, Sheffield6.57AD 1650–1804I Tyers pers commMillere House Bromley, by Row London6.15AD 1607–1762Amold of at alferthoom	Norway Hurdal	6.93	AD 1678–1981	Briffa <i>et a</i> /1986	
UK Imports: Wallace Collection, London 6.69 AD 1604–1773 C Tyers pers comm Crucible Works, Sheffield 6.57 AD 1650–1804 1 Tyers pers comm Millere House Bromley, by Row 1 and at 3/forthroom	Norway south-east	6.49	AD 871-1986	Thun pers comm	
Wallace Collection, London 6.69 AD 1604–1773 C Tyers pers comm Crucible Works, Sheffield 6.57 AD 1650–1804 1 Tyers pers comm Millere House Bromley, by Row 1 and at 3/forthroom	UK Imports:				
Crucible Works, Sheffield 6.57 AD 1650–1804 I Tyers pers comm Millere House Brownlav by Row 1 and at 3/forthroom	Wallace Collection, London	6.69	AD 1604-1773	C Tyers pers comm	
Millere Horice Brownlav, by Row London 616 AD 1607–1769 Amold <i>at sl</i> farthrow	Crucible Works, Sheffield	6.57	AD 1650-1804	I Tyers pers comm	
	Millers House, Bromley by Bow, London	6.16	AD 1607-1762	Amold <i>et al</i> forthcoming	
Godolphin House, Cornwall 4.06 AD 1528–1769 Tyers and Tyers forth	Godolphin House, Cornwall	4.06	AD 1528-1769	Tyers and Tyers forthcoming	

Table 2: Results of the cross-matching of site sequence BWKASQ03 when the first-ring date is AD 1701 and the last-measured ring date is AD 1825

FIGURES

Based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright

Figure 8: Fifth-floor plan (Bain, Swan Architects)

Figure 9: Section I-I (Bain, Swan Architects)

Figure 10: Bar diagram of samples in undated site sequence BWKASQ01

Figure 11: Bar diagram of samples in undated site sequence BWKASQ02

Figure 12: Bar diagram of samples in site sequence BWKASQ03

Figure 13: Bar diagram of samples in undated site sequence BWKASQ04

Figure 14: Bar diagram of samples in undated site sequence BWKASQ05

Figure 15: Bar diagram of samples in undated site sequence BWKASQ06

Figure 16: Bar diagram of samples in undated site sequence BWKASQ07

Figure 17: Bar diagram of samples in undated site sequence BWKASQ08

Figure 18: Bar diagram of samples in undated site sequence BWKASQ09

Figure 19: Bar diagram of samples in undated site sequence BWKASQ10

Figure 20: Bar diagram of samples in undated site sequence BWKASQ11

Figure 21: Bar diagram of samples in undated site sequence BWKASQ12

DATA OF MEASURED OAK SAMPLES

Measurements in 0.01mm units

BWK-A	A26A	66																	
133	78	89	73	79	69	55	64	70	105	93	91	120	94	70	76	89	69	99	81
81	73	78	64	63	66	56	57	54	57	42	51	45	37	31	34	36	53	44	55
38	32	38	49	53	69	81	56	66	45	56	57	70	70	58	65	58	47	66	67
48	58	59	48	50	81														
BWK-A	A26B	66																	
120	105	101	100	90	80	41	59	76	96	82	94	126	96	71	81	95	74	92	81
82	76	87	61	61	62	57	60	61	56	43	53	40	43	35	41	40	49	51	52
36	30	35	50	52	60	85	51	67	53	50	61	69	62	45	75	48	56	68	61
51	56	57	45	57	87														
BWK-A	127A	179																	
73	90	73	94	60	69	70	60	62	52	53	37	57	47	59	62	64	46	66	55
60	53	47	57	50	62	69	73	64	77	60	64	81	89	50	59	69	67	68	81
69	47	53	58	57	50	67	67	69	80	79	87	78	73	66	72	67	78	78	67
91	103	105	99	96	94	74	76	82	71	77	82	85	63	91	102	96	87	98	77
73	72	71	73	79	86	76	76	63	83	90	117	89	87	79	102	89	119	156	173
107	110	1 1 0	1/3	131	03	103	1/2	100	125	122	112	102	65	01	02	96	71	200	- / 5
107	110	140	T40	104	95	102 102	76	100	TZJ CE	122	112	102	50	91	02	00	00	00	60
90	102	00	99 76	92	70	70	06	07	00	00	00	0.0	05	101	04	76	60	71	0.9
94	103	99	10	70	/0	10	00	93	101	100	100	117	90	101	09	70	00	74	90
//	00	170	84	12	94	82	98	85	IZI	IUZ	105	11/	93	8 /	90	16	92	69	
BWK-F	4Z / B	T / 9		C F		<i>с</i> л		F 0		- 0	2.0			- C	4.0	C F		4.0	5.0
87	/4	8/	/6	65	70	64	11	53	55	59	39	53	53	56	49	65	53	48	58
64	43	52	51	57	59	75	60	73	79	60	67	61	74	54	45	66	63	57	74
71	43	55	54	53	44	75	65	67	75	71	91	75	81	63	63	72	67	83	62
83	91	107	87	104	85	79	70	85	71	81	86	69	66	97	109	94	88	94	82
72	77	59	81	72	95	74	73	75	74	101	105	88	84	97	97	87	122	162	180
103	113	120	140	121	108	94	157	115	138	122	114	114	75	94	89	92	69	96	82
98	73	100	86	97	83	85	73	96	67	60	72	73	68	82	80	89	71	85	75
97	94	100	64	91	68	70	81	83	70	78	83	82	102	110	91	86	57	74	90
79	83	92	81	69	95	77	108	86	120	105	107	111	92	89	92	93	84	79	
BWK-A	A28A	199																	
58	82	102	92	79	96	65	52	49	77	109	132	96	113	104	75	70	96	128	120
131	107	68	118	72	108	71	86	103	119	63	138	74	81	89	85	81	96	73	96
77	76	61	74	88	80	70	61	65	80	82	85	87	85	91	84	100	85	71	87
114	87	71	79	112	77	95	91	104	64	71	78	74	68	73	85	54	89	81	46
56	72	69	65	55	68	73	68	76	77	51	66	59	54	80	47	78	64	69	88
65	55	50	59	62	74	62	67	57	61	84	58	58	52	54	52	77	75	56	57
64	66	74	67	61	55	54	60	60	70	76	62	69	47	46	62	54	34	49	53
46	58	42	48	39	48	49	53	33	58	52	54	38	45	54	53	54	56	48	63
56	50	41	37	48	46	41	45	59	52	53	58	53	54	56	40	4.3	44	56	50
34	54	47	46	57	50	47	30	30	39	39	39	39	42	31	48	53	58	64	
BWK-Z	128B	199		•															
68	70	112	80	73	96	115	56	41	73	113	117	105	96	110	71	90	87	131	127
117	101	86	104	78	101	76	86	106	104	69	129	79	83	86	76	94	93	73	87
82	68	67	75	87	71	72	7/	53	82	7/	102	69	70	96	9 U	91	88	69	98
115	00	70	70	110	05	03	01	90	71	71	202	70	61	20	77	50	00	02	51
17	69	70	67	50	72	60	76	67	88	11	76	58	53	61	68	71	75	61	79
70	11	57	68	55	65	66	50	69	59	50	56	61	50	59	53	71	68	59	19
65	69	67	7/	52	59	58	10	65	67	73	7/	60	15	52	61	50	33	57	52
0J //1	62	11	14	37	55	16	49	37	63	13	50	13	40	15	51	50	50	50	52 61
41	02	44	44	12	11	40	40	57	0J E 4	40	10	40	42	40	J4 41	50	10	59	01
49	4 /	40	42	43	44	40	40	24	24	20	40	20	40	43	41	50	43	17	44
40	49	40	43	28	49	43	32	34	38	30	30	39	49	34	57	60	69	4 /	
BWK-A	129A	122	1	1 0 1	1 - 0	100	100	1 0 1		0.0	- 0	C D	- 0	0.5	0.1	5.0	<u> </u>	<i>c</i> 1	6.0
128	129	118	1/5	121	152	128	103	TOT	76	89	28	6/	58	85	91	56	69	64	62
82	/8	87	59	/4	70	60	/6	89	/8	85	107	120	96	86	86	93	8/	80	84
87	/9	63	65	62	/5	/8	64	86	12	57	/8	61	68	80	59	//	//	//	63
58	71	65	81	62	72	65	75	72	52	47	35	65	58	59	62	42	37	46	51
42	59	74	58	58	49	49	58	51	55	46	74	49	54	70	56	53	60	45	46
44	53	51	44	62	49	58	51	65	68	53	59	59	57	74	60	63	85	81	61
59	83																		
BWK-A	A29B	122																	
140	166	131	171	123	122	113	112	93	80	92	66	69	62	88	89	57	70	60	68
65	84	84	65	72	65	65	77	86	79	86	106	129	86	82	95	88	85	82	80
82	81	59	65	57	80	83	66	86	68	64	70	62	76	77	60	65	83	72	70
60	61	69	79	72	78	54	76	70	57	44	46	53	63	54	63	48	31	45	48
40	66	72	50	71	44	44	64	49	53	54	66	52	50	71	54	49	62	43	45
60	43	48	46	60	44	53	64	68	78	56	49	78	50	69	67	56	63	77	56
57	86																		

BWK-A	A30A	100																	
196	211	219	168	170	199	280	185	133	178	262	201	246	188	143	153	128	112	86	119
90	126	96	106	107	77	115	95	116	96	99	130	77	145	114	115	103	94	86	64
82	47	71	68	81	75	45	81	69	103	88	116	98	101	87	114	80	89	110	106
108	101	117	115	95	113	131	97	115	106	99	118	82	89	98	123	114	85	98	83
78	82	83	75	98	64	80	94	81	79	72	58	71	67	57	72	53	75	53	75
BWK-A	A30B	100																	
191	210	205	163	177	200	288	174	132	159	261	201	252	190	144	145	129	125	79	111
99	120	98	92	111	77	105	101	102	97	104	124	82	144	108	113	104	90	90	63
78	50	69	63	85	79	53	73	72	100	88	109	103	98	93	112	87	87	109	99
112	99	115	111	99	109	128	98	114	98	111	115	83	83	101	123	102	86	90	80
75	82	67	96	89	81	66	107	71	75	61	56	74	62	55	78	51	78	53	70
BWK-A	A31A	201																	
103	92	74	120	118	97	38	46	37	42	45	35	38	44	28	34	44	36	31	26
22	27	41	32	42	56	61	52	64	81	68	69	67	79	79	48	67	78	114	95
107	113	82	65	58	67	55	71	57	48	51	50	41	71	51	50	59	49	39	55
53	52	53	50	81	47	77	64	62	70	58	36	53	29	42	41	56	48	21	29
32	39	40	61	81	75	85	99	71	75	62	48	66	98	85	90	82	116	79	114
84	85	60	53	71	131	116	81	81	117	114	103	110	96	134	139	109	84	118	87
127	45	95	90	120	75	109	100	96	118	106	108	113	101	109	106	120	107	113	122
131	107	105	103	97	117	116	98	103	108	116	116	106	91	97	126	111	83	88	120
111	138	150	136	133	111	118	96	102	88	114	64	130	91	91	73	98	89	98	107
105	117	96	114	136	84	113	87	83	92	88	72	90	67	81	80	77	66	90	81
83																			
BWK-A	A31B	201																	
112	102	73	118	101	87	39	43	41	46	43	31	40	50	26	30	47	36	38	24
20	28	37	34	47	53	61	51	68	81	63	69	72	64	98	43	64	79	100	104
119	94	97	62	53	74	54	70	55	51	47	58	38	54	65	53	49	55	42	45
57	60	48	46	87	60	60	69	57	78	56	34	36	44	42	39	52	60	25	22
30	36	46	57	78	81	80	100	67	91	54	37	70	99	90	75	90	117	85	113
85	87	63	52	75	128	119	81	83	112	104	110	100	112	141	131	102	78	115	100
120	57	78	105	119	70	116	91	107	113	107	117	99	110	114	95	130	98	115	125
137	111	108	79	112	114	103	99	104	101	116	102	113	89	104	122	92	96	92	120
100	125	155	148	133	91	124	95	99	99	107	68	127	97	81	84	87	91	100	92
106	107	102	110	121	88	109	90	80	97	83	85	77	75	76	82	72	66	96	79
98																			

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost randomlike, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample *in situ* timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings – the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8–10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason

for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150mm long and 10mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).

3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the *t*-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the *t*-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a *t*-value of at least 4.5, and preferably at least 5.0, is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984–1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-CO4, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of CO8 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual *t*-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the *t*-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8mm for C45, 0.2mm for C08, 0.7mm for C05, and 0.3mm for C04, then the corresponding width of the site sequence is the average of these, 0.55mm. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other

one at a time is called the 'maximal *t*-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton *et a*/ 1988).

4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time – either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of 6 (=15-9) and a maximum of 41 (=50-9). If the last ring of CRO-A06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of 6 (=15-9) and 26 (=35-9) and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20mm, a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515, which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a *post quem* date for felling is possible.

5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 50–5). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton *et al* 2001, fig 8; 34–5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.

6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local

(dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.

Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring 7. widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix C45 C08 C05 C04 C45 +20 +37 +47 C08 5.6 +17+27 C05 10.4 +105.2 C04 3.7 5.1 5.9 Bar Diagram Г 0 1 10 1 70 20 30 40 50 100 110 60 80 90 C45 0 C08 +20C05 +37 C04 +47 SITE SEQUENCE

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the *t*-values. The *t*-value/offset matrix contains the maximum *t*-values below the diagonal and the offsets above it. Thus, the maximum *t*-value between C08 and C45 occurs at the offset of +20 rings and the *t*-value is then 5.6. The site sequence is composed of the average of the corresponding widths, as illustrated with one width

Figure A7 (a): The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths

The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree-Ring Bull*, **33**, 7–14

English Heritage, 1998 *Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates*, London

Hillam, J, Morgan, R A, and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, *Applications of tree-ring studies*, BAR Int Ser, **3**, 165–85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984–95 Nottingham University Tree-Ring Dating Laboratory results, *Vernacular Architect*, **15–26**

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, *J Archaeol Sci*, **8**, 381–90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, *PA C T*, **22**, 25–35

Laxton, R R, and Litton, C D, 1988 *An East Midlands Master Chronology and its use for dating vernacular buildings*, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, *Medieval Archaeol*, **33**, 90–8

Laxon, R R, Litton, C D, and Howard, R E, 2001 *Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral*, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, *J Archaeol Sci*, **18**, 29–40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London

Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT

English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.

The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

- * Aerial Survey and Investigation
- * Archaeological Projects (excavation)
- * Archaeological Science
- * Archaeological Survey and Investigation (landscape analysis)
- * Architectural Investigation
- Imaging, Graphics and Survey (including measured and metric survey, and photography)
- * Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.

We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports

For further information visit www.english-heritage.org.uk

