The Tree-Ring Dating of the Roof Carpentry of the Eastern Chapels, North Nave Triforium, and North Porch, Salisbury Cathedral, Wiltshire

D W H Miles
© English Heritage 2002
ISSN 1473-9224

The Tree-Ring Dating of the Roof Carpentry of the Eastern Chapels, North Nave Triforium, and North Porch, Salisbury Cathedral, Wiltshire

D W H Miles

Abstract

Summary Eighty-four samples from 62 individual timbers were sampled during 1998 from the eastern chapel roofs of Salisbury Cathedral. This included the original roof of the northern Chapel of St Peter and the Apostles, and the southern Chapel of St Stephen and the Martyrs, as well as a couple of samples from re-used timbers from the former glaziers shop over the Chapel of the Trinity and All Saints. Of these 62 timbers, 49 were dated, three producing precise felling dates of spring AD 1222, which accords well with a documented consecration date of 28 September AD 1225. Of the samples dated, 35 formed a 314 -year replicated chronology SARUMI, spanning the years AD 908-1221. This matched extremely well with materials from the region around Dublin, suggesting that much of the structural timberwork for the earliest roofs was imported from this area. Five other timbers matched better with chronologies from southern England and were combined to form the 108 -year chronology SARUM2, spanning the years AD 1106-1213.

During 2000, a further 176 samples were taken from 159 timbers throughout the roofs of the north porch and north nave triforium. Of these, 123 timbers dated. Three precise felling dates were produced for the primary construction phase: two from the winter of AD 1251/2 and one from the winter of AD 1254/5. A fourth felling date of summer AD 1236 identified an earlier reused timber. A 201-year chronology from 27 trees SARUM3x was produced, spanning the years AD 1054-1254. A series of lead sarking boards from the roof were identified as imported from Ireland, and shown to be part of the original construction. Forty-nine of these timbers were considered to have originated from 42 trees and were combined to form the chronology SARUM4, spanning the years AD 8781230. Finally, other post-medieval roof boards and structural repair timbers produced three more site chronologies. These were SARUM5, spanning the years AD 1558-1662, SARUM6 spanning the years AD 1604-68, and SARUM7 spanning the years AD 1672-1735. The identified three postmedieval phases of AD $1661-3, \mathrm{AD} 1669$, and AD 1736 respectively.

Both the eastern chapel roofs and the north nave triforium and north porch roofs have revealed exceptionally important carpentry features, including the earliest crown posts to be found anywhere in Britain, and the earliest use of Arabic numbers, both random and in sequence, again anywhere in British carpentry.

Keywords

Dendrochronology
Standing Building

Author's address

Oxford Dendrochronology Laboratory, Mill Farm, Mapledurham, Oxfordshire, RG4 7TX
Tel: 0118972 4074; email daniel.miles@rlaha.ox.ac.uk

[^0]

Salisbury Cathedral from the south east. © Crown copyright. NMR. FF95/110

Table of contents:

INTRODUCTION: 3
DESCRIPTION OF THE CARPENTRY: 4
Eastern Chapel Roofs 4
Nor'th Nave Triforium Roof 5
North Porch Roof 6
OBJECTIVES OF DATING: 7
ASSESSMENT: 8
SAMPLING STRATEGY: 9
METHODOLOGY: 9
CROSS-MATCHING AND DATING: 12
EAStERN Chapel Roofs 12
North Nave Triforium and North Porch Roofs. 13
Thirteenth-century primary phase-Structural. 13
Thirteenth-century primary phase - Boards. 14
Post-medieval repairs 14
CONSTRUCTION OF SITE MASTERS: 15
EAStERN Chapel ROOFS 15
North Nave Triforium and North Porch Roofs. 17
Thirteenth-century primary phase - Structural 17
Thirteenth-century primary phase - Boards. 17
Confirmation of Irish grouping through the Litton-Zainodin Crouping Procedure 18
Post-medieval repairs. 18
INTERPRETATION AND DISCUSSION: 19
Eastern Chapel Roofs 19
North Nave Triforium and North Porch Roofs - primary phase 20
North Nave Triforium and North Porch Roofs - post-medieval repair phases 22
Source of Timber and Dendro-Provenancing 22
England 22
Ireland. 23
CONCLUSIONS: 24
FURTHER RECOMMENDATIONS: 25
ACKNOWLEDGEMENTS: 25
REFERENCES: 27
APPENDIX 1: DRAWINGS SHOWING LOCATION OF SAMPLES (AFTER JONES) 93

Introduction:

This report details the collection and analysis of 210 samples taken from the roofs of the eastern chapels, the north nave triforium roof, and the north porch (Parvis Chamber) roof of Salisbury Cathedral. This forms the first report from an extended dendrochronological survey of the Cathedral.

Salisbury Cathedral is considered by many to be the epitome of Early English church architecture. Unlike most other cathedrals, Salisbury was built almost entirely to a single design of unparalleled coherence and elegance within a new green-field site (NGR SU 144294 ; Figs 1 and 2). The first foundation stones were laid in AD 1220, and the whole cathedral consecrated in AD 1258, a period of less than 40 years which accounts for its exceptional cohesiveness. The earliest part of the cathedral to be completed was the east end encompassing three chapels: the north being the Chapel of St Peter and the Apostles, the south being the Chapel of St Stephen and the Martyrs, and in between the Chapel of the Trinity and All Saints, also known as the Lady Chapel (Figs 3 and 4). These were dedicated at Michaelmas AD 1225, five and a half years after the foundation stones are said to have been laid.

Construction proceeded westwards during the ensuing 30 years. The choir and east transepts had progressed sufficiently by about AD 1237 for the choir stalls to be completed, and the west end had been reached by the early AD 1250 s (Blum 1991). This included the nave triforium and north porch, with Parvis room over (Figs 3, 5, and 6). By about AD 1250 the central crossing had been completed (Simpson 1996) although the spire was not added until the first half of the following century. The lead roofing was completed by Bishop Bridgport from AD 1256, and the cathedral was consecrated on 30 September AD 1258. Most of the building works were probably finished by AD 1266 , including the Cloisters and Chapter House, and the free-standing bell tower (Tatton-Brown pers comm).

Timber for the construction of Salisbury is known to have come from as many as 16 different forests across Wiltshire and Hampshire, as well as a far a field as Herefordshire. These include the forests of Trivelle and Dean in Herefordshire, Clarendon, Chippenham, Melksham, Savernake, Bramshaw, Downton, and Gillingham in Wiltshire, and Chute and Odiham forests in Hampshire (Fig 7). The question of timber source has been well researched by Gavin Simpson (1996).

Generally, it is not possible to conclusively provenance timbers from locations nearer than 100 miles distant (Bridge 2000a). Sometimes it is possible to provenance a group of timbers from a large group of building timbers from a known woodland with another group of unknown origin, if the matches are high enough. Unfortunately, no well replicated chronologies exist for the various woodlands from which timbers were drawn from for the building of Salisbury, with the exception of five medieval and postmedieval chronologies from Clarendon (Tyers 1999a; 2001).

During the following seven centuries, the cathedral continued to evolve. Probably during the first few decades of the fourteenth century the upper part of the tower and spire were constructed, and probably in AD 1415 the great strainer arches were inserted below to help counteract the excessive loading thus created (Cocke and Kidson 1993). In AD 1479 the stone vaulting was inserted into the central crossing, obscuring a Baltic oak ceiling of c AD 1370 (Simpson 1996).

From the sixteenth century repairs began to feature prominently in the accounts, the first major campaign dating from the AD 1560 s by Bishop Jewel. Although the Reformation mainly affected the sculpture and decorative stained glass, the Civil War was much more damaging to the fabric of the roofs, primarily through the lack of maintenance although lead was removed wholesale from some of the roofs, such as the north nave triforium (Tatton-Brown 2001). Following the Restoration of the monarchy, the cathedral was surveyed by Dr Christopher Wren in AD 1668 in what was the first objective survey. Wren set forth a whole series of recommendations on the repair of the roofs, although major rebuilding of these was not undertaken until the AD 1730s. In AD 1734 Bishop Sherlock employed Francis Price, a master carpenter by trade, and in AD 1737 he was given the post of Clerk of the Works at the Cathedral. There then ensued a massive rebuilding campaign of virtually all of the
roofs, some in their entirety such as the north transept, whilst others escaped with only minor repairs, such as the north nave triforium (Price 1753). About AD 1790 further, but very much more minor alterations and repairs were carried out by James Wyatt. The nineteenth century included restoration schemes by George Gilbert Scott from AD 1862 to AD 1866.

The Cathedral has been extensively studied by architectural historians for centuries (Dodsworth 1814; Cocke and Kidson 1993), and the roofs were first studied by Cecil Hewett in 1980 (Hewett 1980; 1985). More recently a detailed analysis of the phases of building has been undertaken by Tim Tatton-Brown, and of the documented sources of timber by Gavin Simpson (1996).

The first attempt at dendrochronological analysis at Salisbury was by John Fletcher. On 13 September 1968 he collected six samples from the north nave triforium. These were sections of timber offcuts saved by the Clerk of the Works, Roy Spring, who was repairing the roof carpentry of this part of the cathedral at this time. The samples included three sections of inner wall plate with a large hollow chamfer and measuring $7 " \times 81 / 2^{\prime \prime}, 7^{\prime \prime} \times 101 / 2^{\prime \prime}$, and $7^{\prime \prime} \times 12^{\prime \prime}$. Two of these were so badly affected by death-watch beetle attack that they were discarded, the remaining section only had 41 rings with no heartwood/sapwood boundary. Other samples included a section of ashlar 6 " square, again with no heartwood/sapwood boundary and 53 rings, and a rough corbel at the point of an inserted tiebeam measuring 4 " $\times 9$ ", this time with heartwood/sapwood boundary and 71 rings. The final sample was from a roof board from beneath the lead which measured 5 " $\times 1 / 2$ " and which had about 35 rings including 4 rings of sapwood. These samples were processed during January and February 1969, but did not date, due to their being too few rings and no reliable reference chronologies for the period from which to work. Two of the data sheets were found in the Fletcher archive and were included in the present analysis.

Other limited but more successful attempts at dendrochronology were carried out by Nottingham University Tree-Ring Dating Laboratory. In 1990 eight samples were taken from the floor over the crossing vault in the central tower, and eight more samples taken from the ceiling boards fixed to the underside of this floor frame. Six timbers dated with an average heartwood/sapwood boundary date of AD 1220. An estimated felling date of $c \mathrm{AD} 1251(-15,+20)$ was given for this group, and an estimated felling date of $c \mathrm{AD} 1371(-6,+20)$ for six of the ceiling boards below. These were thought to be of Baltic origin (Howard et al 1991). Timber from the spire scaffold was also sampled, and two raking shore timbers dating from $c \mathrm{AD} 1231(-15,+20)$ were found, but these were reused, probably from one of the high roofs (Howard et al 1992). Other timbers from the spire scaffold itself had too few rings for reliable dating. In 1995/6 six out of nine timbers sampled from the chapter house roof were also dated, giving a date of c AD $1259(-10,+15)$, which uses a narrower sapwood range (Howard et al 1996).

Description of the Carpentry:

Eastern Chapel Roofs

When built, the eastern chapels were covered by five parallel steeply-pitched roofs which included two smaller roofs in between the three main chapel roofs, the Chapel of St Peter and the Apostles to the north, and the Chapel of St Stephen and the Martyrs to the south (Fig 8). These remained in position until the main roof over the Trinity Chapel in the centre, and the small narrow roofs either side, were demolished and reconstructed by Francis Price in AD 1736. The surviving roofs over the northern and southern chapels are, however, virtually complete and are unquestionably the finest and earliest roof carpentry in the county of Wiltshire (Figs 9 and 10). They each consist of 21 common rafter-couple trusses with collars, soulaces, and ashlar pieces. Originally, there were three tiebeams in each roof supported on imner and outer wall-plates comnected together by intermediate struts. Above the inner wall-plate is a larger inner plate which is interrupted by the tiebeams into which these plates are tenoned. The ashlars are jointed into the top face of this timber, whilst the sole-pieces are jointed into its outside face (Fig 11). Only two tiebeams survive in situ in the northern roof, along with most of the northern wall-plates. The wall-plates and tiebeams in the southern chapel roof have been replaced, probably by Price in AD 1736.

The two surviving roofs are exceptional in that they were constructed of fine oak of carving quality. The timbers were dressed and neatly jointed wholly with mortice and tenon joints, and the tiebeams chamfered (Figs 12 and 13). Considering that these roofs were never to be seen on account of the stone vaulting over which they were constructed, this lavish quality and care of the carpentry is difficult to justify on practical grounds. However, in the eyes of the medieval craftsman, the roof could be seen by God, which probably explains much of the pride demonstrated by its builders.

One significant feature noted during the investigation was a series of large scribed assembly marks on some of the trusses in both roofs (Fig 14). Remarkably they appear to be early Arabic numbers, and given the ascribed consecration date of AD 1225, this makes this series of numbers the earliest known use of Arabic, rather than Roman, numerals in English carpentry (Hill 1915). These marks were noted on the lower sides of the rafters, on one or two ashlar pieces, and on the tops of a few sole pieces. Whilst it would appear that the whole Arabic number-set has been found throughout the whole of the two roofs, they are not used consecutively, and there are some other marks which are neither letter nor number. Therefore, it would seem they are used here primarily as individual truss identifiers rather than for the sequencing of elements during erection.

North Nave Triforium Roof

Hewett (1980) describes the north triforium roof as being 'the most impressive lean-to roof surviving in any English cathedral'. It is unquestionably the epitome of thirteenth-century carpentry surpassing even that of the Trinity chapel roofs.

This roof is 200 feet long and extends for ten double bays from the west front to the central crossing. Each bay is divided from the next by a flying buttress, and in half by an intermediate truss aligning with the central cluster of four Purbeck marble shafts. Thus, each bay has three trusses, bay 1 at the west end starting with Truss 0 at the corner (Fig 15), Truss 1 being the intermediate truss, and Truss 2 W being on the west side of the first flying buttress (Fig 16). The second bay comprises Truss 2 E, Truss 3, and Truss 4 W . This same pattern of trusses and numbering continues all the way along the whole ten bays.

The nave triforium trusses are typically of a lean-to design consisting of inner and outer principal rafters clasping two purlins on short struts (Fig 17). At the eaves, the rafters seat on double short solepieces which are tenoned into the back of a highly-decorated arcaded top inner wall-plate supported on a lower wall-plate set back to give additional bearing to the inner ends of the solepieces. The arcaded wall-plate is further decorated by a series of quarter-round pendants, tenoned into the projecting soffit, and extending across the face of the lower wall-plate giving the illusion of a series of stone corbels supporting an arcade, but all in timber (Figs 18 and 19). The top of the double principal rafters are jointed into a wall post carrying a top plate. The feet of these posts rest on a sole piece which is cantilevered out from the arcade wall-head, and is restrained from overturning by a brace at the nave end back up to the post. The line of this brace is continued to the principal rafters, aligning with the short strut immediately below the upper purlin. This gives the appearance that these three separate timbers are all one continuous member. The principal rafters are further supported by a collar which is jointed into inner principal at the lower purlin level, and continues to the wall post, halving over the brace. This elaborate engineering solution presumably left a majority of the space unencumbered by tiebeams which might clash with any inserted vaulting to the aisles.

Within each half-bay, there are three common rafters which measure on average 6 " square. These rafters are all additionally supported by raking ashlars tenoned into the top of the upper wall-plate, not dissimilar to the arrangement in the eastern chapel roofs. Some of these are jointed with splayed scarfs, through splayed below but with sallied abutment above, but which are not undersquinted. This is secured by two l" pegs at right angles to the line of the table, and further fixed by a large-headed nail at each end.

The juncture of the nave triforium roof with the north porch roof in bay 5 is equally exceptional. Here, valley rafters are tenoned into the side of the upper principals of the triforium trusses and meet at the top plate. There is a 'collar' to this set of valley rafters, and 'soulaces' as well, all on the plane of the triforium roof. Tenoned into these valley rafters are the feet of eight truncated jack or valley rafters. These rafter couples are scissors-braced with collars, and the severed ends of these scissors braces are picked up by the 'soulace' braces jointed into the side of the valley rafters (Fig 20).

This remarkable essay in carpentry is further enhanced by another series of Arabic assembly marks. Here the jack rafters are numbered from 1 to 8 starting at the eaves (Fig 14). Interestingly, the numbers run $10,2,3,4,5,6$, etc, and those on the west side of each rafter-couple have the numbers followed with an ' N ' as a truss identifier. Coincidentally, the assembly marks are on the northern face of each of the timbers. Whilst the eastern chapel roofs of $c \mathrm{AD} 1222$ are the earliest anywhere in Britain to have Arabic marks of any description along with other types of truss identifiers, those used on the valley rafters of the north porch/north nave triforium are the earliest to run in sequence (Jenkinson 1926) Again, the woodwork at Salisbury is a forerumner in the rich tableau of early English carpentry.

Unlike the eastern chapel roofs, the north triforium roof timber is predominantly of poor-quality, fastgrown, boxed-heart or halved timbers of small scantling. Many of the scantlings are not entirely straight, and many have been scarfed to make up the required lengths. This suggests a radically different source of timber, and is much more typical of structural timber found in other contemporary medieval and post-medieval roofs.

However, an extremely interesting feature is the survival of sarking boards measuring about $1 / 21$ to $3 / 4$ " thick and between $4^{\prime \prime}$ and $6^{\prime \prime}$ in width. These were spaced apart with an inch or two gap to allow ventilation to the underside of the lead. These are of varying periods, the majority of which are thought to date from the eighteenth-century Price repairs. The boards on the west side of the north porch are all of oak, whilst those from the north porch to the central crossing are entirely of softwood, which at Salisbury was introduced by Wyatt in the late-eighteenth century (Tatton-Brown pers comm). Those boards in bays 1,2 , and 3 are virtually all riven oak, fine grained, and of exceptional quality. The return of bay I at the point of the valley are of similar quality. The valley lay-boards themselves were also of oak, which was not riven but tangentially-sawn.

North Porch Roof

Probably the jewel in the crown of all the Salisbury roofs is that to the Parvis Chamber or room over the north porch. Here, 21 trusses continue northwards from the jack rafters at the junction with the north nave triforium to the end gable. Like the valley rafters in the north nave triforium adjacent, these all appear to be scissors-braced, but actually this is an illusion. The scissors braces are interrupted by a collar into which a set of cross-braces are tenoned into the top, and a set of soulaces continuing the same line are tenoned into the soffit of the collars and extend to the rafters. There are also vertical ashlars which are square set and jointed into an inner wall plate, and there are solepieces extending back from this plate to pick up the ends of the rafter feet. There are three tiebeam trusses, at trusses III, XI, and XIX. The central tiebeam truss is braced from below by short pendent wall-posts with carved bottom finials (Fig 21).

The crown-posts within this roof are another feature in the ever-expanding catalogue of superlatives in the roof carpentry at Salisbury. In each of the three trusses is a crown-post with saltire-bracing running between longitudinally. All of these are heavily chamfered to form octagonal sections. These were previously thought to be later insertions (Jones pers comm), but the joints with the tiebeams and the collars are wedged and pegged half-dovetails, which acts as an exceptionally strong hanger to support the mid-span of the tiebeams. Given that this arrangement would be impossible to insert at a later date, they are clearly original, and as such, make this the earliest, and one of the finest, crown-post roofs in the country (Fig 22).

These trusses also have assembly marks, but unlike the jack-rafters, these are all in Roman numerals. They run from 1 at the south end to 21 at the north, and are again on the north face of the timbers. This probably explains why the first jack rafter truss used an Arabic 10 rather than a 1, to avoid it being confused with the Roman 1 which is, of course, virtually identical.

The Parvis Chamber is separated from the rest of the nave triforium by a solid masonry wall continuing the outside aisle wall upwards. This comes up between and infills both trusses II and III of the main run of rafters. Access through the wall is gained by an original door of three heavy oak planks on a series of stout ledgers and vertical noggins, and there still remains an original draw-bar built into the cross-wall, complete with a draw-bar socket lining box (Fig 23).

Like the north nave triforium roof, the majority of the timbers used to construct the Parvis Chamber roof were from fast-grown boxed-heart or halved timbers, of poor quality. This roof is also covered in sarking boards of oak, the majority of which are later, but some are of high-quality slow-grown riven timbers which have been reset.

Objectives of dating:

During 1998, a programme of repairs was undertaken to repair the lead coverings of the eastern chapel roofs, which had apparently been last renewed in AD 1832 for the Chapel of St Stephen and the Martyrs to the south, and AD 1833 for the Chapel of St Peter and the Apostles to the north, and the Trinity Chapel. In conjunction with this, there were the repairs to the timber roof structure.

Following on from a limited selection of samples from the various cathedral roofs previously commissioned directly by the Dean and Chapter, English Heritage commissioned a further 60 samples to be taken in association with these works. Several objectives were initially outlined:

- to confirm the documentary construction date of AD 1220-25 and to confirm that these roofs were the first part of the cathedral to be completed. It was of paramount importance to obtain any samples from timbers with complete sapwood which had escaped the defrasser's axe.
- to try to determine whether any single trees were used in the construction of both roofs, as might be revealed by any same-tree matches between the two roofs. This was especially important as it was unlikely that any complete sapwood remained intact in the southern chapel roof. This would then confirm that the two roofs were constructed at the same time from the same batch of trees.
- to create a well-replicated chronology for the Wiltshire area which might assist in the future dating of other buildings or phases of work within the Cathedral itself.
- to employ dendro-provenancing to try and determine where the timber originated from, and whether there was any evidence to support the notion of timber being imported from Ireland as suggested by the Patent Rolls for AD 1224.

The next phase of repair works to the cathedral began in the year 2000, and included the re-leading of the north nave triforium and north poreh roofs. Included in the sampling brief was the main roof structure of the roofs, both to date the original carpentry as well as to identify and phase later repair timbers. Preliminary analysis of the eastern chapel samples in taken in 1998 had identified a significant quantity of imported Irish timber as well as some others of English origins. Therefore, an extensive sampling programme was designed to identify any further Irish imports, as well as to give a large enough sample base, given that many samples were of 100 rings or less.

The objectives of the dendrochronology in the second phase of sampling were:

- to produce precise felling dates for the various sections of the roofs so as to allow a better chronological picture of the constructional development of the cathedral to be formed, and to confirm that the north porch was contemporary with the north nave triforium. Ancillary to this, it was proposed to sample the saltire
bracing and crown posts in the Parvis chamber roof to determine whether these are part of the primary construction, or a slightly later insertion.
- to date later repairs to the roof structure to allow a better understanding of subsequent repairs, and to better inform the current repair programme.
- to sample the roof sarking boards which were thought to be seventeenth-century or later, and as such possibly to be some of the earliest to survive in a cathedral roof. The repair proposals included the removal of these boards and replacing them with new treated softwood boards as in the other cathedral roofs most recently releaded. Therefore, it was considered desirable to first ascertain the date and phasing of the boarding before it was removed.
- to discover the extent of timber stockpiling and whether the timber came from one or from many different sources, and whether these are the same as those from which the eastern chapel roof timbers originated.
- to produce a number of further replicated tree-ring chronologies for Wiltshire, particularly for the postmedieval period.

Assessment:

Initial inspection of the eastern chapel roofs during 1997 identified exceptional dendrochronological potential in the majority of the structural timbers of the Chapel of St Peter and the Apostles to the north, and the Chapel of St Stephen and the Martyrs to the south. Most of the rafters and many of the collars, as well as few soulaces had very slow-grown timber which had come from large trees cut into four or more members (Fig 24). A few rafters had originated from faster-grown whole trees which had been boxed-heart, as were most of the collars, soulaces, and wall plates (Fig 25).

Due to the recent defrassing of the roof timbers, very little if any complete sapwood remained. Regrettably, the roofs were thoroughly defrassed immediately prior to the repairs being carried out, resulting in the irretrievable loss of bark edge which would have thrown much light on the sequence of timber felling and procurement at the initial stages of the Cathedral's history.

Conversely, the structural timbers from the north nave triforium and north porch roofs were all medium to fast-grown timbers which had been boxed heart or at best halved. Thus the majority of the structural timbers had far less dendrochronological potential than their eastern chapel counterparts. Few of the first-phase timbers retained complete sapwood, again defrassing some time before had removed the majority of bark-edge surfaces left on the timbers by the original builders.

Some of the later phases had sufficient growth rings for successful analysis, but the inserted tiebeams in the triforium were too fast grown to be worth sampling. Timbers with good potential were the replacement trusses either side of the flying buttresses as well as some replacement rafters.

Some of the roof boarding to the north nave triforium appeared to have excellent dating potential. The best boards were the riven oak boards primarily from bays 1 to 3 which had been removed in advance of sampling. None of these boards retained complete sapwood, but some did have heartwood/sapwood boundaries. Other later phases of boards still in situ also had good dating potential, with a number of boards retaining complete sapwood. Most of these later boards were from bay 4 and the west side of bay 5 as well as both sides of the north porch roof.

A number of reused timbers with stop chamfers were replaced during the course of the works. These were assessed for possible dendrochronological potential, but had too few rings to date reliably. Most of the eastern wall plates in the north porch roof had been replaced at some point, but with second-hand timbers, again with too few rings to date.

Sampling strategy:

Sampling to the eastern chapel roofs was carried out during 1998, as repair works progressed. Sampling was primarily restricted to the two surviving roofs, but two samples were taken from re-used timbers in the Trinity Chapel roof to see if any primary phase timbers had been re-used in the present eighteenthcentury roof. Generally, the northern chapel roof was sampled first, as it was the first to be repaired, with the Trinity Chapel roof and the south chapel following on afterwards later in the year.

The samples were numbered using the prefix scec followed by numbers 1-73, with multiple samples from the same timber being labelled $\boldsymbol{a}, \boldsymbol{b}$, etc. Cores which had broken were labelled $\boldsymbol{a I}, \boldsymbol{a 2}$, etc. The sample numbering was unavoidably haphazard due to the necessity of working around the areas of roof structure as they were being repaired. Access was also determined by the presence of scaffolding and staging. Further samples were obtained later on from offcuts directly resulting from the repair works. Sometimes these were from timbers already sampled, but they were used because they often had longer ring sequences, and gave a more replicated sequence. Some gaps in the numbering sequences are due to these secondary timber offcuts being re-numbered to conform with previous samples from the same timber.

Work in sampling the north nave triforium began with some difficulties. The first sampling session was scheduled with the architects to coincide immediately after the leadwork had been removed, but before the roof boarding was dismantled. Unfortunately, the lead workers progressed faster than programmed, and had inadvertently carried on to remove the sarking boards to bays 1 to 3 the day before the scheduled visit. This resulted in much of the boarding, later determined to be primary and in situ, to be discarded into a skip for disposal. Immediately on attending site, the quality of the recently-removed boards was assessed, and the possibility that they were medieval was raised. On consultation with the architects and English Heritage, it was agreed that no further boards would be removed until the spot dating of eight representative samples of boards could be completed. This initial analysis concluded that the riven oak boards were in fact primary to the original construction of the north nave triforium, and that they originated from Ireland.

Given this development, the sampling brief was extended to include a much more thorough analysis of the roof boards. A total of 81 samples were to be taken from the boards already removed, as well as an additional 24 samples taken from the boards still in situ. Given the importance of the woodwork as revealed through the initial spot-dating, it was probable that the salvageable boards already removed would be put back on the roof. Therefore, additional sampling was limited to the ends of boards, or to suitable fragments, so that they could be reinstated. Similarly, the sampling of the boards which had not yet been removed was restricted to parallel slices over the backs of rafters so that no visual disturbance would be noticeable from the inside. Samples from the roof boards were given the prefix scl.

Apart from the roof boards, the sampling of the structural timberwork was much more straightforward. Forty samples were taken from the north nave triforium and 11 samples from the north porch roof. These were all given the prefix scnt. In addition, two samples taken from the north triforium by J M Fletcher in 1968 were found in the archives, and despite having 41 and 53 rings respectively, these were included in the analysis. These were labelled with the prefix $\boldsymbol{F 1 2 9}$, with sample numbers $\boldsymbol{X I}$ and $X I V$ respectively.

Methodology:

All samples were taken from what appeared to be primary first-use oak (Quercus spp.) timbers with reasonably long ring sequences, or with some indication of sapwood. The only exceptions to this were two samples taken from the Trinity Chapel roof which had been reconstructed in AD 1736, and the south rafter to truss III to the north porch roof, which had clear evidence of having been reused from an earlier roof. All in situ timbers were sampled using a 16 mm hollow coring bit. Many of the timbers had multiple samples, the first being from core samples, with later slices from subsequent repairs being used to obtain well-replicated ring sequences. The roof boards were sampled through sectioning with a fine
saw. Details of the samples taken, together with dates produced, are shown in Table 1, and located on the drawings in Appendix 1.

The dry samples were sanded on a linisher using 60 to 1200 grit abrasive paper, and were cleaned with compressed air, to allow the ring boundaries to be clearly distinguished. They were then measured under a $\times 10 / \times 30$ microscope using a travelling stage electronically displaying displacement to a precision of 0.001 mm , rounded to the nearest 0.01 mm .

After measurement, the ring-width series for each sample was plotted as a graph of width against year on log-linear graph paper. The graphs of each of the samples in the phase under study are then compared visually at the positions indicated by the computer matching and, if found satisfactory and consistent, are averaged to form a mean curve for the site or phase. These mean curves, together with the individual ring sequences, are then compared against dated reference chronologies to obtain an absolute calendar date for each sequence.

In comparing one sample or site master against other samples or chronologies, t-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious t-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some t-value ranges of 5,6 , and higher, and for these to be well replicated from different, independent chronologies with local and regional chronologies well represented. Where two individual samples match together with a t-value of 10 or above, this may suggest they originated from the same tree.

Here dating was accomplished by using a combination of both visual matching and a process of qualified statistical comparison by computer. The tree-ring curves were first matched visually, and then independently matched by computer. The ring-width series were compared on an IBM compatible computer for statistical cross-matching using a variant of the Belfast CROS program (Baillie and Pilcher 1973). A version of this and other programmes were written in BASIC by D Haddon-Reece, and latterly re-written in Microsoft Visual Basic by M R Allwright and P A Parker.

A methodical approach is taken in dealing with the individual samples. First, all duplicate radii from a single timber are cross-matched and compared, and if the matches are satisfactory, they are combined to form a single-timber mean. These multiple radii are generally identified by using an ' a ', ' b ', etc after the timber sample number. Cores which have broken into one or more segments are further identified by a ' 1 ', ' 2 ', or ' i ', or ' $i i$ ', after the radii prefix. Once a single mean sequence for each timber has been produced, then the next step in the analysis is to check for same-tree matches. Generally, this is identified through t-values of 10 or more, but sometimes this is identified through the external characteristics of the timber itself, such as knots and shake patterns. Again, all samples clearly identified as having originated from the same parent tree are combined to form a mean sequence for each tree. It is not until this preliminary analysis stage is completed that individual samples / trees are then compared with others from the site and combined into larger site masters.

All individual sequences and components of same-timber means and same-tree means are presented in Table 1. Because this is the primary summary of all material on which the dendrochronological analysis has been based, both actual samples and averaged sequences are presented here. The means of individual radii, as well as same-tree means, are differentiated in the table by the use of italic text. To avoid unnecessary confusion, felling seasons and dates, or date ranges, are not presented in the final column for individual radii comprising a single timber, instead these are presented only for the mean of these individual sequences. Where two or more timbers have been found to originate from the same parent tree, each timber has been given a felling date or date range, but this would be the same as the mean sequence for the tree. Where one of the components making up a same-tree mean has complete sapwood, and another only partial or no sapwood, then the latter would be given the precise date in brackets, even though it would have only produced a terminus post quem, or at best a felling date range, on its own. Where all the individual same-tree components have incomplete sapwood, then a felling date range for the mean is produced by taking the average heartwood/sapwood boundary date, from which the appropriate 95% sapwood estimate is used to work out the felling date range. This range, in
brackets, would then be used for the individual timbers comprising the mean. Similarly, where one or more radii or timbers make up a same-timber or same-tree mean have complete sapwood, the average sapwood ring count is presented for the mean.

Litton-Zainodin Grouping Procedure

A great problem is that the timber clearly originated from a variety of sources. Whilst it was possible to differentiate between the Jrish and English material, the sourcing of the latter was potentially spread over a wide variety of locations, given the documentary sources (Simpson 1996). Usually, in assessing the quality of matching between a sample and a chronology, the proximity of the reference chronology to the site is a contributing factor. Here, because the origin of the trees could be anywhere between Trivelle in south Wales and Odiham in Hampshire, this could not be counted on as being reliable (Fig 7). The other problem is that much if the timber, particularily in the later phases such as the north triforium and north porch roofs, may well have been stockpiled, making internal cross-matching equally difficult.

To overcome the problem of lack of homogeneity, the Litton-Zainodin Grouping Procedure was used to help separate out the Irish from the English material, and to hopefully group the latter by forest source. Developed at the Nottingham University Tree-ring Dating Laboratory, this provides a rigorous, independent, and non-subjective method of separating tree-ring sequences on the basis of t-value comparisons (Laxton et al 1988; Litton and Zainodin 1991). This routine is done entirely by computer and begins with the calculation of a matrix of t-values of all samples within a group. The highest crossmatches between a pair of samples are then automatically selected and averaged together to form a mean of the two, and this mean is substituted for its constituent components. This process is repeated with the t-value threshold gradually being lowered until no more individual samples are left which can be matched above the minimum acceptable threshold. This results in one or more groups of samples relatively matched together which are averaged into site masters.

Ascrihing Felling Dates and Date Ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straight forward. Depending on the completeness of the final ring, ie if it has only the spring vessels or early wood formed, or the latewood or summer growth, a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using a empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives, then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a terminus post quem or felled after date.

An accepted sapwood estimate for British and Irish oaks is given as between 10 and 55 rings with a 95% confidence range (Hillam et al 1987). A recent review of the geographical distribution of dated sapwood data from historic building timbers has shown that a 95% range of $9-41$ rings is more appropriate for the southern part of England, and 11-41 for Wales and the Border counties (Miles 1997a). For Irish timbers, a 95\% sapwood estimate of $14-50$ rings has been used (Baillie 1995). Irish imports apart, documentary sources suggest that timber had been imported from woodlands as far to the north-west as Trivelle and the Forest of Dean in Herefordshire, to more southern counties such as Wiltshire and Hampshire. Whilst it should be possible through dendro-provenancing to identify the |rish material and apply the appropriate $14-50$ range, it would be much more difficult to distinguish the Herefordshire timber from the other English material. Although the 95\% felling date ranges of $11-41$ and 9-4l years respectively are remarkably similar, the terminus post quem dates for those individual samples without a heartwood/sapwood boundary would differ by two years. Some 100 oaks from Trivelle Forest were given on the $7^{\text {th }}$ of October AD 1224, however it is highly unlikely that they would have been used in the eastern chapel roofs as these were consecrated only a year later; instead they most probably were given well in advance of their actual need (Simpson 1996, 14). As for the 100 oaks from
the Forest of Dean, these were granted on the $22^{\text {ind }}$ of January AD 1234 but not had arrived by the $20^{\text {ih }}$ of June AD 1236. Therefore, it is unlikely that timber from either of these sources would have been used in the eastern chapel roofs or the north triforium and north porch roofs, which are a generation later. Given this, the sapwood estimate of $9-41$ years was used for all English material in this present study.

Some caution must be used in interpreting solitary precise felling dates. Many instances have been noted where timbers used in the same structural phase have been felled one, two, or more years apart. Where ever possible, a group of precise felling dates should be used as a more reliable indication of the construction period. It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure under study. However, it is common practice to build timber-framed structures with green or unseasoned timber and construction usually took place within twelve months of felling (Miles 1997a). Given the protracted nature of cathedral building campaigns, more latitude must be given in interpreting construction dates, especially in later phases of an extended building campaign. When estimated sapwood ranges can cover virtually the whole of the construction period of a cathedral such as Salisbury, interpretation based on only a few precise felling dates must be circumspect. However, this can sometimes be mitigated in the light of complementary documentary evidence, as exists here at Salisbury (Simpson 1996). A recent study of almost 600 samples from Lincoln Cathedral by Nottingham University (Laxton et al 2001) illustrates the difficulties of interpreting a large complex site with very few precise felling dates coupled with evidence for stockpiling and reuse of older timbers.

Cross-matching and dating:

All samples included in this study are listed, together with summary statistics and felling dates, in Table 1. Sample locations are shown in Appendix 1.

Due to the complexity of the wide-ranging source of the timbers used, the analysis was carried out in two stages. The first stage covers the basic cross-matching of samples between themselves and with the master chronologies to provide absolute dating. The second section deals with the complexity of provenancing the material to enable the relevant site masters to be constructed, and through the provenancing of the timbers, to allow the appropriate sapwood estimate to be used reliably.

The actual dating of the majority of the samples was relatively straightforward. This was accomplished using standard dendrochronological techniques of cross-matching individual sequences together to form a site master which is then dated with a database of local, regional, and national reference chronologies (English Heritage 1998). As a cross-check, many of the samples were also dated directly with the reference chronologies. These matches are detailed in Tables 2 and 3 and are covered in the Discussion section below.

Eastern Chapel Roofs

Altogether some 84 samples were taken from 62 individual timbers, the majority of them rafters. The south soulace of truss 19 (scec11) was sampled several times as it was the only timber in the south chapel roof to retain complete sapwood at its outer edge. The first sample (scec11a) was a core taken through what was complete sapwood, but the sapwood broke up during coring. The second sample (scecI/c) was a photograph taken of the edge of complete sapwood where exposed to the joint on the collar, which was the most non-destructive way to include the sapwood intact. Eventually, the engineer decided to replace the soulace completely, so a slice (scec11b) was taken through the discarded timber which retained most of the sapwood. All three sequences were therefore combined to form the mean seec 11 of 73 rings including 21 rings of complete sapwood (Table 4).

Sixteen other timbers were sampled two or more times, generally due either to the fracturing of the core, or to the subsequent availability of sections of offcuts. These multiple radii were in each case combined to form single-timber means, as shown in Tables 5-13.

Of the 62 timbers sampled, 49 were dated (Tables $1-3$), three producing precise felling dates of spring AD 1222. An additional 24 timbers retained heartwood/sapwood boundaries, and these ranged from AD 1152 to AD 1213. These results are discussed in the Interpretation and Discussion section below, but it is clearly apparent that much of the timber used to construct the eastern chapels was imported from Ireland.

Many of the timbers have originated from very slow-grown trees. Sample scec57 for instance had 193 rings and extended back to AD 929, while sample scec 70 had a first measured ring date of AD 908. Clearly a number of the trees used in the construction of these roofs were in excess of 300 years old.

Despite intensive work on some additional samples, a number failed to date conclusively. This is primarily due to shorter, complacent ring sequences from faster-grown material.

Regrettably, as it retained complete sapwood, sample scec11 failed to date due to it having wider, complacent rings. However, this timber did have one interesting feature in that it showed evidence of an original fracture which had been repaired with two nails at the time of erection (Fig 26). Another timber sampled was scec3, the westernmost tiebeam of the north chapel roof. Three cores were taken from this timber which exhibited a clear heartwood/sapwood boundary. Initial analysis on the first core suggested a tentative date slightly later than the other felling dates. As this core had only 77 rings, it was decided to take two more cores from this timber, the last one having 95 rings. The three samples were all combined into one mean, but the tentative date was not confirmed, so this timber must remain undated for the present.

A number of other samples failed to date, generally due to there being insufficient number of rings. These included scec3, scec6, scec26, scec50, scec51, and scec68, all with 60 rings or less. A number of other samples, seec 15 with 99 rings, scec 18 with 75 rings, scec 32 with 83 rings, scec 58 with 123 rings, and scec 73 with 94 rings, all failed to date despite reasonable ring sequences.

North Nave Triforium and North Porch Roofs

Here 176 samples were taken from a number of different phases of construction spread out over five centuries. Fortunately, these could initially be distinguished by the carpentry and character of the timber between the primary construction phase and the later post-medieval repairs.

Thirteenth-century primary phase - Structural

Preliminary cross-matching showed that the two earliest phases were again represented by both English as well as Irish imports. However, as the Irish material was used solely for the roof boarding, and for one packer placed between a purlin and a rafter (scnt28), it was very straight forward initially to separate the English from the Irish material. The roof boarding was also of a number of different phases, but only the earliest phase was Irish, the remainder was again of English origin. These were physically differentiated by the fact that only the Irish boards were of slow grown riven timber (Fig 27), whilst the later boards were all sawn and of a more regular appearance (Fig 28). As for the structural timberwork, sometimes the phasing could be distinguished by the surface character of the timber, as well as from the carpentry. Sometimes however rafters were difficult to distinguish and it was only through the dendrochronological analysis that the actual phasing was resolved.

The first group of samples to be studied were the first-phase structural timbers including four valley boards from bay 1, and two sets of 1968 data from John Fletcher. Altogether, 58 individual samples were taken from 45 timbers. A number of subsidiary samples were taken from I1 individual timbers to gain the maximum overall sequence length or complete sapwood. These were combined to form singletimber means (Tables 14-17).

Once this process had been completed, the 45 individual timber sequences were compared with each other and four additional pairs were found which had originated from the same parent tree. These included inner principal rafters scnt02 and scnt04, rafters scnt43 and scnt46, valley lay boards scll02
and $s c l 103$, and valley lay board $s c l 104$ with outer principal rafter $s c n t 03$. These are combined as shown in Tables 18-19.

Of these 45 timber sequences, 32 were dated. However, only four of these retained complete sapwood. Two rafters from the north porch, scnt43 and scnt46 both retained complete sapwood, and were felled in the winter of AD 1251/2. One other rafter with obvious signs of reuse, scnt42, was found to be felled in the summer of AD 1236 . From the north nave triforium, one upper principal rafter from truss 3 was found to be felled in the winter of AD 1254/5. Some 22 other timbers dated which retained some incomplete sapwood, or heartwood/sapwood transition, and a further six samples dated with no clear heartwood/sapwood boundaries (Tables I and 20).

Although the majority of the samples from these two roofs dated, 13 failed primarily due to there being too few rings. These samples included scnt10, scnt12, scnt29, scnt31, scnt45, scnt49, and F129XI from the Fletcher archive. Most of these were from fast-grown boxed-heart trees with relatively complacent ring sequences. Other timbers with more than 75 rings failed to date, notably sent 15 with 107 rings, $\operatorname{scnt} 25$ with 82 rings, scnt47 with 82 rings, scnt 48 with 75 rings, scnt 50 with 101 rings, and scnt5I with 89 rings. These contained areas of distorted, narrow, ring sequences which prevented conclusive matches.

Thirteenth-century primary phase - Boards

The next group of timbers to be analysed were the sarking boards from the roof (Fig 29). Fifty-two were unprovenanced boards from within bays 1 to 3 at the west end of the north triforium roof, removed by the leadwork contractors during the initial stripping of the roofs before sampling on site commenced. Another eleven boards were sampled in situ from bay 4 of the north triforium roof and from the western roof slope of the north porch, with the sole exception of one from the eastern roof slope. With 64 samples from 63 roof boards, and a single pack from underneath a rafter, a total of 65 samples with Irish characteristics were first compared with each other. Initially, one pair of samples from opposite ends of the same board was taken to link a short piece with heartwood/sapwood transition to a much longer heartwood sequence. Thus, sample scl34a was combined with scl34b with a t-value of 4.88 and an overlap of 21 years, forming the mean scl34. Now only individual boards were left, and these were compared with each other to identify any same-tree matches. Thus, four pairs and two groups of three were found to match together with exceptionally high t-values and were similarly combined to form same-tree means (Tables 21-23).

Of the 64 boards sampled, 51 were found to date, as shown in Table I. Although none of these retained complete sapwood, 18 of the boards that dated retained heartwood/sapwood boundaries. These ranged from AD 1175 to AD 1230 , with only three lying before AD 1200 . The remaining 33 samples had no heartwood/sapwood transitions. These ranged from AD 963 to AD 1212 , and matched best with lrish rather than English chronologies.

One sample had 238 rings and dated, spanning the years AD 908-1145. This was from the board used as a packer between a purlin and a rafter in the north triforium roof, scnt28. This sample also had two bands of exceedingly narrow rings making matching difficult.

Thirteen boards failed to match, either with the other samples, or with the English and Irish reference chronologies individually. Most of these were due to distorted rings rather than wide, complacent ring patterns. These had reasonable ring lengths such as scl101 with 108 rings, sci20 with 135 rings, and scI40 with 170 rings.

Post-medieval repairs

Two elements representing later repairs were sampled - structural roof timbers and the sarking boards above. Adjacent to the flying buttresses, the majority of the principal rafters had been replaced, and four of these were sampled (scnt08a, scnt08b, scnt20, and scnt35). Six common rafters were also sampled in bays 8 and $10(\operatorname{scnt} 21, \operatorname{scnt} 22, \operatorname{scnt} 27, \operatorname{sent} 33, \operatorname{scnt} 39$, and $\operatorname{scnt} 40)$. A repair to the lower purlin in
bay 8 (scnt24) was also sampled, as was a cleat on the east rafter X of the north porch roof (scnt51). From these, a total of 17 samples was taken from 12 timbers.

As in the other phases of timbers analysed, multiple radii from single timbers were first combined, as in the case of sample scnt $08 a$ and the other sequences from $s c n t 08 b$ and scnt $08 c$, and the four radii from sample scnt35, as shown in Tables 24 and 25.

In addition to the structural timbers detailed above, some 38 boards were sampled from the north triforium and north porch roofs. Twenty-five of these were unprovenanced boards within bays 1 to 3 at the west end of the triforium roof which had been removed during the initial stripping of the roofs before sampling on site commenced. The remaining 13 boards were sampled from bays 4 and 5 of the north triforium roof as well as both sides of the north porch roof.

Again, multiple samples from single timbers were combined, therefore samples scl79a and scl79b were combined to form the mean scl79.

All but two of the structural repair timbers dated (Tables 1 and 26). Samples scnto8 and scnt 20 dated to the winter of AD 1661/2, and samples scnt21, scnt22, scnt27, and scnt35 all dated to the spring of AD 1662. Three other samples, scnt33, scnt 39 , and scnt 40 had incomplete sapwood but produced felling date ranges consistent with these felling dates (see Interpretation and Discussion below).

Two timbers failed to date. Sample scnt 24 with 85 rings is a repair and could therefore date from any period, as was sample scnt51, a cleat on the side of a rafter from the north porch.

As for the roof boards, 21 dated to this phase of construction, all from bays $1-4$ of the north triforium roof. Six had complete sapwood which varied over three years. Sample scl86 dated to the winter of AD 1660/1, samples scl64 and scl76 dated to the winter of AD 1661/2, samples scl69 and scl84 were felled in the spring of AD 1662 , and sample sel77 was felled in the spring of AD 1663 . A further 15 samples with incomplete sapwood produced felling date ranges consistent with these felling dates (Table 1).

Two other boards from the west face of the north porch, scl94 and scl95 were found to have originated from the same tree. These both retained complete sapwood and dated to the spring of AD 1669.

Two ex situ boards from bays 1-3 of the north triforium roof, and five more from the west face of the north porch all dated to the eighteenth century. Five of the boards retained complete sapwood and were all found to be felled in the spring of AD 1736 . The remaining two had incomplete sapwood but produced felling date ranges consistent with these felling dates (Table 1).

Eight of the post-medieval boards failed to date, all due to having too few rings. These included samples scI80 and scI83 with 50 and 35 rings respectively but from the same parent tree, scl 85 with 45 rings, and samples scl96 through scllot, all with less than 43 rings even though they were all derived from the same tree and combined to form the 48 -year mean scl96100 (Table 27). The photograph of samples scl96-scl100 illustrates how they had been cut from a single \log (Fig 30).

Construction of site masters:

Eastern Chapel Roofs

Very early on in the analysis it became clear that some of the material had indeed originated from Ireland, due to the exceptionally high and consistent individual matches of the majority of the slowergrown samples with the DUBLINI chronology (Baillie 1977a). Therefore, it was going to be necessary to construct at least two individual site masters for the same building phase, one of the Irish material and the other for the locally-grown timber. The problem was to be able to identify clearly exactly which were which in order to ensure that no samples were mistakenly placed in the wrong regional group, thus
destroying any attempt at creating a well-provenanced master chronology. This was achieved by not only producing groups of timbers based on inter-site matching as described in the methodology section above (Table 3), but additionally through individual matching with a range of regional chronologies (Table 2). Tabulating which areas the samples matched best would give some indication of the provenance of the timber.

Nine reference chronologies were selected for this purpose. DUBLIN1 is a well replicated chronology from the Dublin area and covers the period AD 855-1306 (Baillie 1977a). MC13 is one of Dr John Fletcher's working composite chronologies thought to be made up of material from Exeter, and thought to include some material from Trichay Street by Jennifer Hillam, and spans the period AD 811-1170. As the precise provenance of the material used in this working regional reference is not known, it has only been used as a dating tool. WALES97 is a composite chronology made of 58 chronologies from Wales and the Border Counties (Miles 1997b), and SALOP95 is similarly composed of 71 chronologies from Shropshire (Miles 1995). BRISTOL is a 55 -timber composite chronology produced by Jennifer Hillam from a number of sites around Bristol, and covers the period AD 770-1320 (Hillam 1994). SOUTH is also a large composite chronology produced by Jennifer Hillam and Cathy Groves of 320 chronologies from the south half of England (Hillam and Groves 1994). PALACE is the chronology from the Bishop's Palace Hereford and spans the years AD 889-1179 (Haddon-Reece et al 1989). EASTMID is the large, well replicated chronology for the East Midlands produced by Nottingham University (Laxton and Litton 1988), and SCOTLAND is another long chronology produced for Scotland by Mike Baillie (1977b). It should be borne in mind that some of the chronologies are not independent, for instance the material from BRISTOL is almost certainly included in SOUTH, and SALOP95 shares some of the same Welsh Marches material as WALES97. Some chronologies have a larger sample base, such as EASTMID and SOUTH, whilst others are individual site chronologies, such as PALACE. Whilst MC13 is a useful dating chronology, it may have components which are included in SOUTH or BRISTOL. One could of course choose many more chronologies, but these appeared to cover most of the British Isles yet were generally restricted to a single region.

During the first phase of the analysis, 28 samples showed a clear predilection towards DUBLIN1 with one sample matching with a t - value of over 14 (Table 2). These were combined to form an intermediate site master SCECIRE which dated, spanning the years AD 908-1221. This 314-year chronology matched with a t - value of 17.75 with DUBLIN1, showing without any doubt an Irish origin for this group.

Five samples displayed very different ring characteristics to the Irish material, particularily having wider mean ring widths and were generally converted from boxed-heart trees whereas most of the Irish material were from larger trees which were at least quartered if not cut into more sections. These all seemed to match better with English or Welsh chronologies and so were combined to form a five-timber site master SARUM2.

Sixteen other samples dated, eleven of which were found to match equally well with most of the chronologies to such an extent that they could not be provenanced with any certainty. The other five samples were found to match less well with these chronologies, but were still dated both with a misceilaneous group of masters as well as other samples from the site (Tables 2 and 3).

The remaining material was then compared with the two site masters SCECIRE and SARUM2, and seven additional samples were found to match particularily well with the 28 -timber SCECIRE intermediate master (Table 2), backed up by consistent matches with the 28 individual components. Therefore, samples scec $1, \operatorname{scec} 2, \operatorname{scec} 9, \operatorname{seec} 30, \operatorname{scec} 46, \operatorname{scec} 52$, and $\operatorname{scec} 59$ were all considered to be of Irish origin and were combined with the previous 28 samples included in the intermediate site master, making a new 35 -timber master SARUMI, again of 314 years (Table 28).

It is quite likely that samples scec41, and particularily scec53, scec64, and scec65, are also of Irish origin, but because of some strong individual matches with southern English chronologies, it was felt
safer to leave them out of the site master. This would at least ensure that the individual components of SARUM1 would all be from a single homogeneous data set as best as could be determined.

Therefore these four samples, plus samples scec $8, \operatorname{scec} 13, \operatorname{scec} 25, \operatorname{scec} 66$, and scec67, have been left out of either the Irish site master SARUMI or the Southern England master SARUM2, but have nevertheless been dated. Some of the matches are weaker than others, for instance sample scec 8 had no outstanding matches with the above mentioned chronologies, but did match with $t=4.96$ with NANTWICH (Leggett et al 1982), 5.66 with ROOKLEY (Miles and Worthington 1997), and 6.05 with UPWICH2 (Groves and Hillam 1997).

The ring-width data for the 108-year site master SARUM2 are shown in Table 29.

North Nave Triforium and North Porch Roofs

Unlike the eastern chapel roofs, the segregation between the English and the Irish imports was very much more straight-forward in this part of the Cathedral because the material used for the structural timberwork was entirely English, and the roof boarding fixed to it was entirely lrish, at least for the primary-phase boards.

Thirteenth-century primary phase - Structural

Here, all of the structural timbers appeared to be English. This assessment was initially based on the faster-grown and poorer-quality character of the timber which was very similar to the English material found in the eastern chapel roofs. This was confirmed by better independent matches with English rather than Irish reference chronologies.

Initially, the 21 best-matching timbers was constructed to form a 195-year site master SARUM3. This spanned the years AD 1054-1248 and respectably high matches with the reference chronologies were observed (Miles and Worthington 2001, 74-9).

Six additional timbers, some from a later sampling visit, were subsequently found to match this preliminary site master and all 27 timbers were found to match as shown in Table 20. This created the master chronology SARUM3x of 201 rings (Table 30), which dated, spanning the years AD 1054-1254 (Table 31). The matches with the reference chronologies were slightly lower than the preliminary 21timber chronology, but it was felt that the larger group of 27 timbers better reflected the material found in the north triforium and north porch roofs.

One sample from the Fletcher archive, F129XIV, dated with a t-value of 4.86 with scnt42, and 4.21 with SARUM3x, as well as with a number of individual reference chronologies independently. However, this was not included in the site master because there were only a few matches, and it did not contribute to the overall master chronology.

Thirteenth-century primary phase - Boards

The next group of timbers to be analysed were the Irish sarking boards from the roof. Together with the single pack from underneath a rafter, a total of 64 samples with Irish characteristics were combined to form 57 individual trees. Of these, 42 matched together sufficiently well as shown in Table 32 to form another site master, SARUM4 (Table 33). This chronology was 353 years long and spanned the years AD 878-1230. The matches between this site master and the Irish chronologies were exceptionally high, and the best match was with SARUMI, the eastern chapel timbers felled some 30 years earlier, with a t-value of 18 (Table 34). Two other samples were not included in the site master due to sections of very narrow and distressed rings, but were nevertheless dated. Sample sc/8 matched with SARUM4 with a t-value of 4.45 , and $\operatorname{scnt} 28$ (a packer below a purlin at T 15), matched with $t=7.93$ (Table 35).

Confirmation of Irish grouping through the Litton-Zainodin Grouping Procedure

With the samples from the eastern chapel roofs, some four separate datasets had been analysed and grouped into four replicated chronologies:

Chronology:	Rings:	Dates AD spanning:	Made up of:
SARUM1	314	$908-1221$	35 trees
SARUM2	108	$1106-1213$	5 trees
SARUM3x	201	$1054-1254$	27 trees
SARUM4	353	$878-1230$	41 trees

These had been grouped primarily by individual matches with a variety of reference chronologies as detailed above. Given that over 180 individual timbers, all dating from within 30 years of each other but from diverse sources were present, it was decided to double-check the grouping. The material was run through the Litton-Zainodin Grouping Procedure by Dr Cliff Litton at Nottingham University, and a large number of groups were produced at varying t-value thresholds. Above the highest threshold level of $t>10$, ten groups of Irish timbers were formed, and two groups of English timbers identified. In progressing down through lower and lower thresholds, a trend was noticed. At $t>6$, the Irish material from both the eastern chapels as well as the north nave triforium had merged into one homogeneous group, whereas the English material had actually increased into four disparate groups, before both the Irish and English material melded into virtually one grouping at a $t>5$ (Table 35).

Basically, the grouping procedure confirmed the 28 timbers in the intermediate master SCECIRE as being of Irish derivation. It also identified seven samples which did not match overwhelmingly well individually with the Irish chronologies, but showed them to group with the Irish material at $t>10$. These same timbers were included in the final site master SARUMI. One timber, scec53, grouped with the 1rish material at $t>8$, and three others, scec25, scec41, and scec64 grouped with a $t>6$. It is quite probable, given this independent analysis, that these additional four timbers are of Irish origin and could be included in any future overall Irish chronology from Salisbury. However, it is envisioned that this will not be constructed until the completion of the present extended dendrochronological programme. Therefore, the SARUMI master chronology was left with the 35 individual components.

Another interesting phenomenon highlighted by the Litton-Zainodin Grouping Procedure is the fact that one set of timbers, group D, included four samples from the eastern chapel roofs, and five from the north triforium roof. These two roofs dated 30 years apart, yet these samples match together within a group of $t>10$. Similarly, virtually all Irish samples from both the AD 1222 and AD 1254 phases meld together in a group of $t>8$, indicating that this material has come from the same homogenous source. This unquestionably is the area within five or ten miles of the south-east coast of Ireland between Dublin and New Ross. Here virgin woodland was exploited during the early medieval period, and therefore the timber all matches exceptionally well. For instance, it is quite common for individual samples to match with the Dublin chronology with t - values in excess of 12 or 13 (Brown pers comm). This can be compared with the recent analysis of a collection of imported Baltic oak boards from Bowhill near Exeter in Devon (Groves 2002). Here the timber was slow grown like the Irish material, and matches between different radial sections of the same tree produced t-values of over 10 , and opposite ends of the same boards matched with t-values of over 20 .

Post-medieval repairs

As discussed in the previous section on the first stage of the basic analysis and dating, all subsidiary samples from the same timbers were combined to form single-timber means. Once this was achieved, the 49 individual timbers were compared to see if there were any same-tree matches. This revealed a number of multiple same-tree samples which were combined to form nine same-tree groups (Tables 36 42).

This reduced the number of samples from 49 timbers to 24 individual trees. These were compared and four separate groups were formed. The earliest was formed from five of the same-tree composites sarum5a-sarum5e, together with six individual timbers: scnt35, scni40, scl70, scl76, scl81, and scl88 (Table 26). This produced the 105 -ring site chronology SARUM5 (Table 43), which dated, spanning the years AD 1558-1662 (Table 44).

The second group was formed of two samples, scl94 and scl95. These had matched together with a t value of 11.31 and were clearly from the same tree (Table 45). These were from two roof boards on the north porch and were combined to form the 65 -year mean SARUM6 (Table 46) which dated, spanning the years AD 1604-68 (Table 47).

The third group was composed of seven roof boards, two of which were from the same tree (scl68, scl72, scl90, scl91, scl93, and the mean scl8992 (Tables 37 and 48). These were combined to form the 64 -ring site master SARUM7 (Table 49), which dated spanning the years AD 1672-1735 (Table 50).

The final group of timbers included boards scl96 through scll00 which were combined to form the mean scl96100 (Table 27). This 48-ring mean failed to date, primarily due to there being too few rings (Fig $30)$.

Interpretation and discussion:

Eastern Chapel Roofs

Of the 35 clearly identified Irish timbers, three retained complete sapwood, producing precise felling dates of spring AD 1222. They were from the collar of truss 6 (scec 1), the south rafter of truss 7 (scec 2), and the north rafter of truss 10 (scec4). Although all three of these were from the northern chapel roof, the very strong matches between certain pairs of timbers from both roofs suggest that they may have come from single trees or at least the same woodland. For example, sample scecl from the north chapel matched with sample scec52 from the south chapel with a t-value of 12.51 , sample scec 5 from the north matched with sample scec55 from the south with $t=12.33$, and sample scec 7 from the north matched with sample scec57 from the south with $t=12.23$ (Table 2). Whilst these high matches are very likely to have originated from single trees, it is also possible that these could have been from same area of woodland trees with the same growing and management conditions. It also must be born in mind that some of these samples are made up of several different radii, therefore giving a cleaner, more robust, signal resulting in better matches. Furthermore, matches between virgin Irish trees tend to be much higher than would normally be found in English examples (Brown pers comm). Nevertheless, this shows that the two roofs were constructed from material almost certainly resulting from the same consignment of timber, and if not constructed at the same time, were at least planned as a whole ensemble.

Of the Irish samples which dated, three of these retained complete sapwood, having 22,24 , and 26 sapwood rings respectively. Some 24 other samples showed clear signs of having a heartwood/sapwood boundary (Table 1; Figs 3I and 32). The homogeneity of this group of Irish timbers, as shown by the t values in Table 2, is further supported by the fact that all three samples with complete sapwood were found to be felled in the same season and year, the spring of AD 1222. Given the reference to shipping of some, but not necessarily these, Irish timbers sometime in AD 1224, and completion of the chapels in late AD 1225 , it is extremely likely that the vast majority of the trees were felled within a year, or two at the most, of AD 1222. The felling date ranges and termini post quem dates for the Irish timbers were calculated using the 14-50 year range (95% confidence) appropriate for Irish oaks (Baillie 1995).

By using this assumption, an assumed sapwood distribution for the lrish material for this phase can be calculated based on the known heartwood/sapwood boundary dates. These range from AD 1152 for scec49 to AD 1208 for scec42, giving an absolute range of 13-69 sapwood rings. Using the same methods as Hughes et al (1981), a 95\% confidence level felling date range of $16-56$ years was calculated for this group of 27 eastern chapel timbers. This is slightly higher, but broadly similar to, the

14-50 range used for other Irish timbers (Baillie 1995). Of course, extreme caution must be used in interpreting these figures too rigidly as some allowance must be allowed for earlier felling, windfalls, etc, not to mention the small sample base (Miles 1997a). Still, it does support the findings by other practitioners that Ireland has a wider and higher sapwood range than England and Wales (Hillam et al 1987).

Of the remaining timbers which have dated, the majority of which are of English extraction, we do not have any with complete sapwood. However, six of these have heartwood/sapwood boundaries which vary from AD 1198 to AD 1213 (Table 1; Fig 32). These are all consistent with the AD 1222 felling dates of the Irish timbers. For these, a sapwood estimate appropriate for southern England of 9-41 years (95% confidence) has been used (Miles 1997a).

Of the remaining timbers which could not be clearly provenanced to either southern England or Ireland, the southern England sapwood estimate of $9-41$ years has been used, as being the more conservative at the earlier end of the range.

Although not an insuperable problem, we have trees which have been felled near Dublin in the spring of AD 1222 , a record of transporting timber from Ireland during the middle of AD 1224 , and a consecration date of September AD 1225 for the three chapels with roofs presumably completed. This leaves only a year to completely convert the timber and frame the roofs, not to mention laying the roof covering and gutters, and putting in the vaults below. However, it must be borne in mind that the Patent Rolls are not a complete series of records, and it is quite possible that other shipments of timber from Ireland a year or two before might have been omitted or unrecorded. Although less likely, it is just possible that the roofs were not quite finished at the time of the consecration at Michaelmas AD 1225, although the stone vaults below undoubtedly would have been. Still, given enough labour and some good direction and organisation, it could have been possible to erect these roofs in the space of a year, even in the AD 1220 s .

Thus, one possible interpretation is that the roofs were originally intended to be constructed from timber supplied from local Royal forests such as Clarendon, but that difficulties in actually acquiring the trees resulted in the procurement of timber from further afield. Therefore, at least one shipment of oak from Dublin was obtained during AD 1224. Given this, it would appear that framing was taking place during the latter part of AD 1224 and the early part of AD 1225 . This scenario is further bolstered by the fact that some of the rafters in the roofs were from much faster-grown trees, quite unlike the lrish material, suggesting that timbers from several diverse sources were brought together at the time of framing. This faster grown material is spread throughout the roofs, rather than limited to individual trusses or group of trusses, suggesting that most of the material was together before framing began in earnest.

North Nave Triforium and North Porch Roofs - primary phase

Here, the demarcation between Irish and English timber was much more clear - all of the structural timbers were from southern English sources, and all of the early first-phase boarding from Irish sources near to Dublin.

From the north nave triforium, only one timber retaining complete sapwood, scnt05, dated, producing a felling date of winter AD 1254/5. This was a principal rafter at truss 3, towards the west end at the bottom of the valley to the return.

Three other timbers from the north porch gave precise felling dates. Two of these were from rafters scnt43 and scnt46, and both were felled in the winter of AD 1251/2. A third felling date of summer AD 1236 was from the west rafter in truss II (scnt42). However, this timber showed clear signs of having been reused, and therefore the date is of little use in the interpretation of the present roofs.

Twenty other timbers retained clear heartwood/sapwood boundaries as shown in Figure 24. These vary in date from AD 1200 to AD 1235 , with a single early example of AD 1192 for sample scnt14 for an
outer principal rafter. With this single exception, all other heartwood/sapwood transition dates are consistent with the AD 1251/2 and AD 1254/5 felling dates. A sapwood estimate of $9-41$ years (95% confidence) appropriate for southern England was used for these English timbers (Miles 1997a).

It is perhaps misleading to suggest that these few solitary felling dates reflect the actual felling dates of the remainder of the timbers, indeed they themselves may have been stock-piled for a year or more. It is highly unlikely for the north porch to have been constructed before the north nave triforium on which it is clearly supported. Indeed, the carpentry clearly suggests that both roofs were designed as an integrated ensemble. It is quite likely that the north porch roof, together with bay 5 of the north triforium roof, were prefabricated in advance of the erection of the other bays of the triforium, and this is supported by the use of sophisticated carpenter's assembly marks in this area. Clearly this element was not initially framed before AD 1252, and could have been framed as late as AD 1255. The trusses to the west end of the north nave triforium were not framed up before AD 1255, nor would they have been framed up much later. This is based on the good matches between the outer principal rafter of truss 3 which produced the AD 1254/5 date, and the principal rafters from truss 2 adjacent, as well as the valley lay boards in bay 1 (Table 20).

There are some documentary references to the purchase of oaks which might relate to the AD $1251 / 2$ felling dates from the north porch roof. On the $24^{\text {th }}$ of June AD 1251, 20 oaks were obtained, five each from Melksham Forest and Chippenham Forest, as well as from Doiley and Finkley in Chute Forest. These were for making 20 rafter couples (Simpson 1996). It is very tempting to suggest that these were for the north porch roof, which was constructed from 21 full rafter trusses, one of which has been proven to have been reused from an earlier dismantled roof.

Certainly, the north porch roof and that of the north nave triforium were the last of the roofs to be completed. The AD $1254 / 5$ date is not long before the consecration of the cathedral on the $30^{\text {th }}$ of September AD 1258, and the lead roofing was said to have been completed by Bishop Giles of Bridgport during his period in office between AD 1256-62.

The rafter felled in the summer or autumn of AD 1236 found reused in the cross-wall of the north porch is an interesting anomaly. Exactly why a roof less than 20 years old should be dismantled does not fit into the normal idea of building construction. At this time, the choir was being finished and lead roofing to the eastern transepts completed. It is quite possible that this rafter had been a left-over from this work, or had been part of some sort of temporary structure later dismantled as the construction moved westwards.

As for the lrish roof boards, none of these retained complete sapwood. However, 18 of the boards which dated retained heartwood/sapwood boundaries. These ranged from AD 1175 to AD 1230, which is broadly similar to the absolute range of 56 years found on the Irish timbers from the eastern chapel roofs of AD 1222. Three of these dated from before AD 1200: AD 1175, AD 1187, and AD 1196. Despite having a sample base of only 18 timbers with heartwood/sapwood boundaries, an attempt was made to determine an assumed sapwood estimate as was done with the Irish timbers in the eastern chapel roofs. Here, none of the samples retained anything near complete sapwood, so the AD $1254 / 5$ date from one of the principal rafters of the trusses below was used as the most probable felling date for the Irish boards, assuming they were brought over immediately before the roof was ready to receive them. Given this, an absolute range of $24-79$ rings was produced, with a 95% confidence felling date range of $27-75$ rings of sapwood. This is significantly broader and higher than the assumed sapwood estimate for the 27 timbers from the eastern chapel roof which produced an absolute range of 13-69 and a 95% confidence range of $16-56$ rings, and substantially higher than the 95% confidence range of 14 - 50 rings found in other Irish timbers (Baillie 1995).

Given that the material from the north triforium roof had originated from the same geographical area, chronological period, and parent sapwood population as the eastern chapel roofs, one would have expected the felling date ranges to be broadly similar. As they are clearly not, the answer probably lies in the possibility of stock-piling. As the eastern chapel roofs were the first to be completed, it is unlikely that any of the material was stock-piled. Conversely, the north triforium roof was one of the
latest to be finished, and the likelihood that timber was left over from earlier phases of building is very much higher. The study of the assumed sapwood ranges support the hypothesis that the north triforium roof boards include some material which has been stock-piled for a number of years, perhaps by as much as a decade or more in some instances. Given this, the obvious result is that the 95% confidence assumed sapwood range of $27-75$ years for the north triforium roof is not valid as the actual dates for some of the material are somewhat earlier than the estimated AD 1254 felling date. Given that the distribution of heartwood/sapwood boundary dates from the eastern chapel roofs is 56 years for a single felling episode, the 55 -year span for the nave triforium roof boards strongly suggests a narrower felling period rather than an extended one, even though the sample base is rather small.

Figure 24 shows the relationship of last heartwood dates to those with heartwood/sapwood boundaries. Some boards had remarkably early last heartwood rings dates, 12 from before AD 1100, and one as early as AD 963. Obviously the minimum number of sapwood rings were not removed here, but instead the trees were large enough that both an inner and outer board could be converted from a single radial section. The 14-50 year sapwood estimate (95% confidence) for Ireland has been used for all Irish boards (Baillie 1995).

North Nave Triforium and North Porch Roofs - post-medieval repair phases

Three clear phases of work were found in the post-medieval period (Fig 34). The first represented a major course of repairs which included the replacement of the trusses adjacent to the flying buttresses which pierce the roof at intervals. Here a number of principal rafters as well as common rafters produced felling dates of spring AD 1662. The timbers dated included the principal rafters of truss 6 east and west, the lower principal rafter of truss 12 east, several rafters in bay 7 , and the outer principal rafter to truss 19 , together with two adjacent rafters. These repairs have also been reflected in some of the roof boarding removed from the western three bays of the nave triforium, which produced felling dates of winter $\mathrm{AD} 1660 / 61$, winter $\mathrm{AD} 1661 / 2$, spring AD 1662 , and spring AD 1663 . This work clearly represents repairs being carried out to the roof following the Civil War when the lead was stripped from this part of the cathedral. This may relate to a gift of $£ 500$ given by Bishop Duppa for repairs in or before AD 1662 (Cocke and Kidson 1993, 94).

A slightly later phase of repairs has been identified to the western slope of the north porch, following the report made by Wren in AD 1668. Two boards over rafters XVII produced felling dates of spring AD 1669 , and probably represent only minor releading.

A third phase of leadwork repairs has been identified by a series of boards dating to the spring of AD 1736. Two of these were found removed from bays 1 to 3 , and five others sampled in situ from the west side of the north porch roof. This clearly relates to the repairs being carried out by Francis Price, and identifies this area having been worked on, probably during AD 1736 or AD 1737.

All post-medieval timbers sampled proved to be English rather than Irish, and consequently the sapwood range of $9-41$ years (95% confidence) has been used (Miles 1997a).

Source of Timber and Dendro-Provenancing

England

There are plenty of documentary references to timber being obtained from as many as 16 different forests across Wiltshire and Hampshire, as well as a far a field as Herefordshire. The locations of these woodlands are shown on the map in Figure 6. These include the forests of Trivelle and Dean in Herefordshire, Clarendon, Chippenham, Melksham, Savernake, Bramshaw, Downton, and Gillingham in Wiltshire, as well as Chute and Odiham forests in Hampshire. The question of timber source has been well researched by Gavin Simpson (1996).

Unfortunately, there are no well replicated reference chronologies whose origins are clearly from any of these forests, with the exception of Clarendon. Here a number of buildings comprising Clarendon Palace were constructed between the thirteenth and eighteenth centuries. The Salisbury site masters, as well as the individual samples, were compared with this collection of Clarendon chronologies (Tyers 1999a, 2001), and only two thirteenth-century samples from the north porch roof matched significantly. When compared with the chronology from Queen Manor Farm (CL_QMF1), which spanned the years AD 1218-1328 (Tyers 1999a), samples scnt43 matched with a t-value of 5.63 and scnt46 matched with a t-value of 5.11 . These two samples probably originated from the same tree, and the mean of these, scnt436 matched with a t-value of 5.90 with the Clarendon chronology. Considering that these samples overlapped with the earlier part of the Clarendon chronology by only 34 years, the matches are especially significant. However, given that Downton, Melchet, and Buckholt forests are all within five miles of Clarendon, and Bramshaw and Chute within ten miles, it is not possible to provenance these two timbers to Clarendon over any of these others (Fig 7). Nevertheless, there is a documentary reference of Doiley and Finkley wood in Chute Forest each giving, or promising to give, five oaks for rafters on the $24^{\text {dh }}$ of June AD 1251 (Simpson 1996), which would accord well with the winter AD $1251 / 2$ felling dates for samples scnt43 and scnt46, both rafters from the north porch roof.

Otherwise, it has not been possible to conclusively provenance any of the English timbers through the dendrochronology. Part of this problem is that many of the primary-phase timbers have been obtained from diverse sources, and even if there were a selection of well-replicated chronologies from these various forests, matches with individual samples would tend to have lower t-values than groups of timbers from the same source.

Ireland

Altogether, 75 trees showed clear evidence of having originated from Ireland. For the eastern chapels, the 35 -timber mean SARUMI produced a t-value of 18.02 with DUBLIN1 (Baillie 1977a), which is about twice as high as the other matches from England with comparable replicated regional chronologies. Baillie's DUBLIN1 site master extends from AD 855 to AD 1306 and is comprised of 20 individual trees carefully provenanced from the Dublin area. Given the exceptionally high t-values between the SARUMI and DUBLIN 1 chronologies, there can be little doubt that the trees did originate from the area around Dublin.

Dendro-provenancing is perhaps better illustrated in Figure 35 where t-values for various chronologies are shown plotted on a map of the British Isles. Some of the largest general regional chronologies such as SOUTH have been left out due to their wider-ranging coverage, and high degree of replication. Similarly, single sites have been avoided due to their low degree of replication, which gives lower t values than those regional chronologies with a moderate number of samples such as DUBLIN1. Nevertheless, somewhat higher t-values than neighbouring chronologies are produced by some chronologies such as LONDON (Tyers pers comm), PETERC (Tyers 1999b), and EASTMID (Laxton and Litton 1988) due to their exceptionally large sample base. Additional chronologies include BELFAST (Baillie 1977c), CARLMED (Groves 1993), YORMEDX (Hillam pers comm), NORWCHQY (Groves pers comm), CRESINGl (Tyers pers comm), OXON93 (Haddon-Reece et al 1993), EXCATH1 (Mills 1988), and KENT88 (Laxton and Litton 1989). A composite chronology from Brittany (BRIT3) produced by Pilcher, Guibal, and Merion-Jones was also used to see if there was any correlation with northern France. It should be borne in mind that those chronologies with a larger sample base, and of longer overall length, will give higher t - values than those of shorter, less replicated, sequences which are nearer the true source. Nevertheless, a trend from east to west towards Ireland is clearly evident.

Similarly, dendro-provenancing within Ireland has shown an equally clear progression from the northwest to the south-east, with the best matches centring around Dublin and New Ross.

The selection of Dublin is also corroborated through documentary evidence in the form of Henry III's Patent Rolls. Gavin Simpson has outlined many of the sources of timber for much of the building history of the cathedral, the earliest being a gift of 40 good rafters from Clarendon on the 18 May AD 1220 (Simpson 1996). Clearly Clarendon Forest, only a few miles distant from Salisbury, would have been the most logical place to obtain timber economically. However, the timber was probably not actually collected until the 14 March AD 1224 when the king settled a dispute between the chief carpenter Godardus and the warden of the forest. This suggests a delay in obtaining sufficient timber, and it is likely that as the stonework of the vaults was nearing completion, considerable anxiety would have been expressed over the delay in the timberwork.

Clearly something would have to be done about this, and what is of particular interest is that later on in AD 1224, a consignment of timber was carried on the western (Irish) sea by William of Dublin (Cal. Pat. Rolls Henry III i. (1216-1225), 444). Here is clear evidence for the importation of timber from Ireland, with Dublin mentioned specifically.

The second batch of Irish timbers used for boards in the north triforium roof produced the 40 -tree site master SARUM4. This matched remarkably well with SARUMI with a t-value of 17.2 , but less so with DUBLINI with a slightly lower t-value of 15 . However, based on the map of t-values for the north triforium boards, it would appear that these had come from a similar, but not quite the same source as the eastern chapels (Fig 36).

Conclusions:

The first phase of tree-ring analysis during 1998 and 1999 confirms the documented construction date of AD 1225 for the eastern chapels, but the scarcity of precise felling dates makes it difficult to show any chronological development between the north and south chapel roofs. It is particularily regrettable that the majority of the timbers in the eastern chapel roofs were defrassed only months before they were sampled, with the result that we could have had dozens of precise felling dates rather than the measly three which survived the axe. The information lost through the removal of non-structural sapwood is incalculable and may be likened to the excavation of a Roman villa with heavy earth-moving equipment.

However, similarity between the timbers used in both roofs shows that they were from the same consignment of timber, if not the same trees, and that they were most likely framed at the same time. Although the dendrochronology failed to produce a well-replicated early chronology for Wiltshire, it did produce an excellent chronology of 314 years for the Dublin area, as shown through dendroprovenancing. Whilst it has not been proved that this is the same shipment as the AD 1224 documentary reference of timber being bought from William of Dublin, it does nevertheless confirm that substantial imports of Irish oak were being obtained during the construction period immediately before this reference. Other samples matched more local chronologies, suggesting that at least some of the material was obtained from more local sources. Some of the undated samples are likely to have originated from these latter sources and may date in the future should further work be carried out on the later roofs of the Cathedral, which documents suggest were supplied from English woodlands. Hence, one chronology was produced which was clearly from the Dublin area, but it was not possible to suggest a provenance for the home-grown material except in the broadest terms.

The second phase of tree-ring research during 2000 and 2001 , on the north nave triforium and north porch roofs, identified several felling dates from AD 1251/2 and AD 1254/5, showing that these were some of the last parts to be constructed before the Cathedral was consecrated in AD 1258. The dendrochronology, together with an analysis of the carpentry, has confirmed that the north porch roof is basically coeval with the north nave triforium. Furthermore, although the crown posts and saltire bracing within the north porch roof were unsuitable for dendrochronology, again the carpentry clearly shows that they are contemporary with the rest of the roof structure, making this the earliest crown-post roof in the country. A paucity of precise felling dates makes it difficult to assess the degree of stockpiling, but the tree-ring analysis shows that the timbers did come from a variety of sources.

The Fletcher archive revealed original measurement work sheets for two samples obtained from the north nave triforium as a consequence of repairs in 1968. One of these has dated, an ashlar piece, dated with a terminus post quem of after AD 1239.

Analysis of the under-lead sarking boards identified a hitherto unknown batch of Irish material. This produced another well replicated chronology of 353 years encompassing 40 trees, and dated from AD 878 to AD 1230. Excellent matches with Ireland showed that it originated from the south-east coast of Ireland between Dublin and New Ross. Although the best intra-site matches for both the AD 1222 and the AD 1255 groups of Irish timbers were found within their respective groups, rather than between phases, the analysis using the Litton-Zainodin Grouping Procedure has demonstrated that while the Irish material has not come from the same woodland, it has come from broadly the same geographical area. Through the production of assumed sapwood estimates for both the 1222 and 1254 batches of Irish timbers, evidence has been produced suggesting that the earlier group of Irish timbers from the eastern chapels was most likely coeval, whereas the Irish boards from the north triforium roof would appear to have some degree of stockpiling, perhaps by as much as a decade or more.

Analysis of later roof boards identified repairs dating from AD 1661 to AD 1663 following the Restoration of the monarchy, and a slightly later repair to the north porch roof of AD 1669 following a survey by Christopher Wren. A third batch of roof boards from both the north nave triforium roof as well as the west face of north porch identified further repairs undertaken by Francis Price in AD 1736 or AD 1737. Early analysis of this material allowed an informed decision to be taken on the fate of this boarding over the north porch, and the repair programme was amended accordingly.

Altogether, analysis of a total of 260 samples from 220 individual timbers over the past four years has resulted in 170 timbers dating. This material was combined into seven new well-replicated master chronologies, two of them for south-east Ireland, extending back to the year AD 878. Two other chronologies for English timbers were also produced, spanning the years AD 1106 - AD 1213, and AD 1054-AD 1254. Three more were post-medieval chronologies covering the periods AD 1558-1662, AD 1604-68, and AD 1672-1735, a period poorly represented in English tree-ring chronologies.

Further recommendations:

Before any future programme of repairs to the cathedral roofs, the affected areas should be assessed to evaluate the impact on the dendrochronological potential of the timberwork. Certainly, defrassing must never be undertaken, as vital archaeological evidence is irretrievably lost in this process. If decayed sapwood must be removed to effect repairs, or to assess the structural condition of the timbers, this should be done in conjunction with the dendrochronologist to ensure the retention, or retrieval, of any sections of complete sapwood.

All timbers removed during the course of repairs should be clearly labelled for provenance, and set aside for any future tree-ring analysis. Again, consultation with the dendrochronologist at an early stage is advisable.

In order to get as complete picture of the development of Salisbury Cathedral, it is obviously desirable to sample as many roofs as possible, including any reused primary-phase timbers as well as the eighteenthcentury repairs undertaken by Price.

Acknowledgements:

The author is grateful to Mr Michael Worthington who assisted on site and in the laboratory. Mr Tim Tatton-Brown initiated the project and provided much useful discussion on site as well as much of the historical background, and the record drawings were provided and annotated by Howard Jones. The commissioned architects, Michael Drury and Elizabeth Osmin, assisted in the arrangements of the sampling programme, and provided other practical assistance. The Cathedral works department
carpenters were very helpful on site and carefully retained all offcuts for subsequent analysis. Acknowledgements are also given to the Ancient Monuments Laboratory of English Heritage, Sheffield Dendrochronology Laboratory, Nottingham University Tree-Ring Dating Laboratory, and Professor M Baillie of the Queen's University, Belfast for both published and unpublished data. Ian Tyers kindly made available chronologies from his work at Clarendon. Particular thanks are given to Dr Cliff Litton who ran the thirteenth-century material through the Litton-Zainodin Grouping Procedure at Nottingham University. Cathy Groves, David Brown, Coralie Mills and Anne Crone, and Martin Bridge all provided useful discussion. Nigel Fradgley of English Heritage provided the excellent early survey drawings as well as the bar diagrams. The work was funded by English Heritage, and Alex Bayliss and Peter Marshall both were instrumental in setting up the extended project and for commissioning the work, as well as giving invaluable input into this report.

References:

Baillie, M G L, 1977a Dublin Medieval Dendrochronology, Tree-Ring Bulletin, 37, 13-20
Baillie, M G L, 1977b An Oak Chronology for South Central Scotland, Tree-Ring Bulletin, 37, 33-44
Baillie, M G L, 1977c The Belfast oak chronology to AD 1001, Tree-Ring Bulletin, 37, 1-12
Baillie, M G L, 1982 Tree-Ring Dating and Archaeology, London
Baillie, M G L, 1995 A slice through time-dendrochronology and precision daing, London
Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

Baillie, M G L, and Pilcher, J R, 1982 unpubl A Master tree-ring chronology for England, unpubl computer file ENGLAND, Queens Univ, Belfast

Barefoot, A C, 1975 A Winchester dendrochronology for 1635-1972 AD - its validity and possible extension, J Instit Wood Sci, 7, 25-32

Bridge, M C, 1998 Compilation of master chronologies from the South, unpubl computer file SENG98, University of London Dendrochronology Laboratory

Bridge, M C, 1999 Tree ring analysis of timbers from Hill Hall Theydon Mount Essex, Anc Mon Lab Rep, 55/1999

Bridge, M C, 2000a Can dendrochronology be used to indicate the source of oak within Britain?, Vernacular Architect, 31, 67-72

Bridge, M C, 2000b Tree-ring analysis of timbers from the Harwich Crane and Wheelhouse, Harwich, Essex, Anc Mon Lab Rep, 2/2000

Brown, D M, 1997 Dendrochronological dating of Hiberno-Norse and medieval structures from Waterford, in Late Viking Age and Medieval Waterford Excavations 1986-1992 (eds T Barry, R Cleary, and M F Hurley), 643-9 (Waterford Corporation)

Brown, D M, forthcoming Dendrochronological Dates from 3 and 5 Barrack Street, Tuckey Street, South Main Street and Hanover Street, in Recent Excavations from Cork City (eds R M Cleary and M F Hurley)

Blum, P Z, 1991 The Sequence of Building Campaigns at Salisbury, Art Bulletin, 73, 6-38
Cocke, T, and Kidson, P, 1993 Salisbury Cathedral: Perspectives on the Architectural History, London (HMSO) Condit, T, 1996 Trim Castle, Archaeology Ireland, 10

Dodsworth, W, 1814 An Historical Account of the Episcopal See and Cathedral Church of Salisbury, London and Salisbury

English Heritage, 1998 Dendrochronology: Guidelines on producing and interpreting dendrochronological dates, London

Fletcher, JM, 1978 Oak Chronologies for Eastern and Southern England: Principles for their Construction and Application: Their Comparison with Others in North-West Europe, in Dendrochronology in Europe (ed I M Fletcher), BAR, 51, 139-56

Groves, C, 1993 Dendrochronological analysis of timbers from The Lanes, Carlisle, Cumbria, 1978-82; Volume 1, Anc Mon Lab Rep, 21/93

Groves, C, 2002 Dendrochronological analysis of Bowhill, Exeter, Devon, Centre for Archaeology Rep, 23/2002
Groves, C, and Hillam, J, 1997 Tree-ring analysis and dating of timbers, in Multiperiod Saltmaking at Droitwich. Hereford \& Worcester - excavations at Upwich, 1983-4 (ed J D Hurst), CBA Res Rep, 107, 74-88

Haddon-Reece, D, and Miles, D H, 1993 Working compilation of 190 British reference chronologies supplied by various researchers, unpubl computer file MASTERAL, Oxford Dendrochronology Laboratory

Haddon-Reece, D, Miles, D, Tapper, M C, and the late Fletcher, J M, 1987 List 22 - Tree-ring dates, Vernacular Architect, 18, 54-5

Haddon-Reece, D, Miles, D H, and Munby, J T 1990 List 38 - Tree-ring dates, Vernacular Architect, 21, 46-50

Haddon-Reece, D, Miles, D H, Munby, I T, and the late Fletcher, JM, 1993 Oxfordshire Mean Curve - a compilation of master chronologies from Oxfordshire, unpubl computer file OXON93, Oxford Dendrochronology Laboratory

Haddon-Reece, D, Miles, D H, and Munby, J T 1989 List 32 - Tree-ring dates, Vernacular Architect, 20, 46-9
Hewett, C, 1980 English Historic Carpentry, Chichester (Phillimore)
Hewett, C, 1985 English Cathedral and Monastic Carpentry, Chichester (Phillimore)
Hill, G F, 1915 The Development of Arabic Numerals in Europe Exhibited in Sixty-four Tables, Oxford
Hillam, J, 1994 Compilation of master chronologies from the Bristol area, unpubl computer file BRISTOL, Sheffield Dendrochronology Laboratory

Hillam, J, and Groves, C, 1994 Compilation of master chronologies from the South, unpubl computer file SOUTH, Sheffield Dendrochronology Laboratory

Hillam, J, Morgan, R A, and Tyers, 1, 1987 Sapwood estimates and the dating of short ring sequences, in Applications of tree-ring studies: current research in dendrochronology and related areas (ed R G W Ward), BAR, 333, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1991 List 39 - Tree-ring dates, Vernacular Architect, 22, 40-3

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 - Tree-ring dates, Vernacular Architect, 23. 51-6

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 List 65 - Tree-ring dates, Vernacalar Architect, 27, 78-81

Hughes, M K, Milsom, S J, and Leggett, P A, 1981 Sapwood Estimates in the Interpretation of Tree-ring Dates, JArchaeol Sci, 8, 381-90

Jenkinson, H, 1926 The Use of Arabic and Roman Numerals in English Archives, Antiq J, 6, 263-75
Laxton, R R, Litton, C D, and Howard, R E, 2001 Dating of the Roof Timbers at Lincoln Cathedral, English Heritage Res Trans, 7

Laxton, R R, Litton, R R, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, PACT, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Tree-Ring Chronology and its use for dating Vernacular Buildings, Univ Nottingham, Dept of Classical and Archaeol Studies, Monograph Ser, 3

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Chronological Sequence for Oak, 1158-1540 AD, Medieval Archaeol, 33, 90-8

Leggett, P A, Hibbert, F A, Hughes, M K, Fletcher, J M, and Morgan, R, 1982 Tree-ring dates for buildings with oak timber, Vernacular Architect, 13, 48

Litton. C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, JArchaeol Sci, 18, 429-40
Miles, D H, 1995 Working compilation of 71 reference chronologies centred around Shropshire by various researchers, unpubl computer file SALOP95, Oxford Dendrochronology Laboratory

Miles, D H, 1997a The interpretation, presentation, and use of tree-ring dates, Vernacular Architect, 28, 40-56
Miles, D H, 1997b Working compilation of 58 reference chronologies centred around Wales by various researchers, unpubl computer file WALES97, Oxford Dendrochronology Laboratory

Miles, D H, 1997c Working compilation of 55 reference chronologies centred around Hampshire by varions researchers, unpubl computer file HANTS97, Oxford Dendrochronology Laboratory

Miles, D H, 2002 The Tree-Ring Dating of 8 Market Place, Shepton Mallet, Somerset, Centre for Archaeology Rep, 4/2002

Miles, DH, and Haddon-Reece, D, 1995 List 64 - Tree-ring dates, Vernacular Architect, 26, 62-72
Miles, D H, and Worthington, M J, 1997 Tree-ring dates, Vernacular Architect, 28, 159-81
Miles, D H, and Worthington, M J, 1998 Tree-ring dates, Vernacular Architect, 29, 111-29
Miles, D H, and Worthington, M J, 1999 Tree-ring dates, Vernacular Architect, 30, 98-113
Miles, D H, and Worthington, M J, 2000 Tree-ring dates, Vernacular Architect, 31, 90-101
Miles, D H, and Worthington, M J, 2001 Tree-ring dates, Vernacular Architect, 32, 74-9
Miles, D H, and Worthington, M J, forthcoming Tree-ring dates, Vernacular Architect, 33
Mills, C M, 1988 Dendrochronology of Exeter and its application, unpubl PhD thesis, Sheffield Univ
Price, F, 1753 A Series of Particular and Useful Observations made with Great Diligence and Care, upon that Admirable Structure, the Cathedral Church of Salisbury, London

RCHME, 1993 Salisbury: The Houses of the Close, London (HMSO)
Simpson, G, 1996 Documentary and Dendrochronological Evidence for the Building of Salisbury Cathedral, in Medieval Art and Architecture at Salisbury Caihedral (eds L Keen and T Cocke), BAA Conf Trans, 17, 10-20

Sweetman, D, 1994 Archaeological Excavations at Shop Street, Drogheda, Co. Louth, Proc Royal Irish Acad, 84
Tatton-Brown, T, 2001 The Roofs of Salisbury Cathedral, Spire (annual report of the Friends of Salisbury Cathedral)

Tyers, I, 1999a Tree-ring analysis of three buildings from the Clarendon Estate, Wiltshire, ARCUS Rep, 429
Tyers. 1, 1999b Tree-ring analysis of oak timbers from Peterborough Cathedral, Peterborough, Cambridgeshire: Struchural timbers from the nave roof and north-west portico, Anc Mon Lab Rep, $9 / 99$

Tyers, 1, 2001 Tree-ring analysis of further buildings from the Clarendon Estate, Wiltshire, ARCUS Rep, 429b
Tyers, I, and Wilson, R, 1999 Tree-ring analysis of oak timbers from the Church of St Mary the Virgin. Yatton, North Somerset, Anc Mon Lab Rep, 61/1999

© Crown Copyright
Figure 1: Plan of Salisbury with inset map of the United Kingdom

Figure 2: Reconstructed plan of the close in the late medieval period (RCHME 1993)

Figure 3: Plan of Salisbury Cathedral showing areas sampled (after Cocke and Kidson 1993)

Figure 4: Salisbury Cathedral from the north-east, with eastern chapels at the left end of the building. © Crown copyright. NMR. BB71/3292

Figure 5: North-westend of Salisbury Cathedral showing north porch and north nave triforium. © Crown copyright. NMR. BB71/2458

Figure 6: North porch of Salisbury Cathedral from the north-east. © Crown copyright. NMR. BB71/2307

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

 Chapel, at the last octreming of the Church.

Figure 8: Section showing original five roofs of eastern chapels prior to demolition of centre three roofs to Trinity Chapel by Price in 1736 (Price 1753)

Figure 9: Section looking east through St Peter's Chapel and the Trinity Chapel (N Fradgley, RCHME unpubl)

Figure 10: St Peter's Chapel - details of plate assemblies (N Fradgley, RCHME unpubl)

Figure 13: Typical roof timbers from the eastern chapels showing fine slow-grown, quarter-cut grain (B Gilmour)

Eastern Chapel roois - AD 1224/5

Chapel of St Peter (Northern Chapel)		A							$\}$	L										
Northroof slope trusses:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Chapel of St Stephen (Southern Chapel)							0					8		C			\sum			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Northroof slope trusses:
North porch/North nave triforium roof

	01	2	3	4	5	6
Easiroof slope trusses:					4	p

West roof slope trusses:

BRITISH ARABIC NUMBERS: AD 1200-1500
Constructional and Timber Inscriptions

Figure 14: Arabic assembly marks recorded in eastern chapel roofs and north porch at Salisbury Cathedral, and other comparative examples from England (Miles unpubl)

Figure 15: Valley of north nave triforium at west end, truss 0. © Crown copyright. NMR. BB69/4394

Figure 16: North nave triforium looking east showing truss 2 west. © Crown copyright. NMR. BB71/2660

Figure 17: Typical section of north nave triforium (N Fradgley, RCHME unpubl)

Figure 18: North nave triforium details of plate assemblies (N Fradgley, RCHME unpubl)

Figure 19: North nave triforium wallplates and roof sarking boards. © Crown copyright. NMR. BB69/4393

Figure 20: Intersection of scissors-braced north porch roof and north nave triforium. © Crown copyright. NMR. BB71/2502

Figure 21: North porch, details of roof assemblies (N Fradgley, RCHME unpub)

Figure 22: North porch plan, cross-section, and long section (N Fradgley, RCHME unpubl)

Figure 23: Door between Parvis Chamber and north nave triforium (P Marshall 2002 unpubl)

Figure 24: Typical examples of slow-grown Irish timbers - scec2b (south rafter T7, north chapel) and scec62 (south rafter T19, south chapel) (90%)

Figure 25: Typical examples of faster-grown English timbers - scec 68 (south rafter T21, south chapel) and scec 72 (south solepiece T10, north chapel) (90%)

Figure 26: Upper end of south soulace brace of truss 19, St Stephen's (South) Chapel roof, showing two original nails repairing the shoulder damaged during erection (75\%)

Figure 27: Typical examples of Irish under-lead sarking boards from north nave triforium roof. Note notches cut in side of boards (1:2)

Figure 28: Typical examples of English under-lead sarking boards from north nave triforium roof dating from 1662 (1:2)

Figure 29: Typical sections of Irish under-lead sarking boards scl4, scl26, and scl27, and packer scntll, from north nave triforium roof (1:1)

Figure 30: Photograph of roof boards scl96, scl97, scl98, scl99, and scl100 showing conversion from same $\log (1: \mathrm{I})$

Figure 31: Scale section drawings of timbers sampled (scale 1:8)

Figure 31 (cont): Scale section drawings of timbers sampled (scale 1:8)

Figure 31 (cont): Scale section drawings of timbers sampled (scale 1:8)

Figure 32: Bar diagram showing dated eastern chapel samples in chronological position

Figure 33: Bar diagram showing dated thirteenth-centurynorth nave triforium and north porch samples in chronological position

Figure 34: Bar diagram showing dated post-medieval north nave triforium and north porch repair samples in chronological position

Figure 35:
© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Table 1: Summary of tree-ring dating

SALISBURY CATHEDRAL-EASTERN CHAPELS

Table 1 (continued): Summary of tree-ring dating

SALISBURY CATHEDRAL - NORTH NAVE TRIFORIUM and NORTH PORCH

Dates AD spanning	H/S bdry	Sapwood	No of rings	Mean width mm	Std devn mm	Mean sens mm	Felling seasons and dates/date ranges (AD)
1132-1238	1222	16	107	1.75	0.98	0.188	1239-63
1083-1223	1223	H/S	141	1.13	0.36	0.210	(1229-61)
1072-1223	1220	3 Avg	152	1.33	0.73	0.205	1229-61
1084-1226	1226	H/S	143	1.20	0.54	0.186	1235-67
1072-1217	1217	H/S	146	1.37	0.77	0.230	(1229-61)
1141-1232	1230	2	92	1.44	0.57	0.232	
1216-1254	1230	24C	39	1.09	0.27	0.212	
1226-1245	1238	7	20	1.09	0.31	0.236	
1239-1254	1241	13C	16	0.99	0.26	0.223	
1141-1254	1235	19 CAvg	114	1.35	0.54	0.217	winter 1254/5
-		H/S	77	2.32	1.33	0.301	
1135-1200	1200	H/S	66	1.74	0.73	0.230	1209-41
1565-1658	1630	28	94	1.88	1.09	0.231	
1573-1614			42	2.29	0.94	0.230	
1620-1661	1632	291/4C	42	1.16	0.51	0.238	
1558-1660	1632	28	103	1.64	0.81	0.227	
1558-1661	1632	291/4. Avg	104	1.83	0.96	0.213	spring 1662
1125-1160			36	2.04	1.35	0.161	
1154-1233	1233	H/S	80	1.17	0.33	0.192	
1125-1233	1233	Avg H/S bdy	109	1.45	0.92	0.184	1242-74
-		H/S	38	1.90	0.97	0.295	
-		H/S	37	1.79	0.85	0.299	
-		Avg H/S bdy	39	1.88	0.96	0.289	
1136-1230	1230	H/S	95	2.20	0.97	0.171	1239-71
-		H/S	53	2.70	0.95	0.213	
1150-1235	1235	H/S	86	1.24	0.66	0.234	1244-76
1112-1193	1192	1	82	1.39	0.36	0.173	1201-33
-		H/S	107	1.78	1.19	0.162	
-		H/S	33	1.09	0.36	0.130	
-			107	1.79	1.18	0.159	
1143-1182			40	2.50	0.72	0.232	after 1191
1144-1231	1231	H/S	88	1.43	1.23	0.236	
1149-1211			63	1.70	0.73	0.274	
1144-1231	1231	Avg H/S bdy	88	1.55	1.20	0.247	1240-72
1139-1227	1226	1	89	1.84	0.99	0.217	1235-67
1139-1220	1220	H/S	82	2.16	0.90	0.187	1229-61
1576-1661	1630	$311 / 4 \mathrm{C}$	86	1.44	0.81	0.199	spring 1662
1574-1661	1637	241/4C	88	1.69	1.14	0.226	spring 1662
1567-1661	1630	$311 / 4 \mathrm{C}$	95	1.50	0.69	0.238	spring 1662
1143-1225	1218	7	83	1.63	1.18	0.235	1227-59
-		171/4C	85	1.83	0.56	0.211	
-		5	82	1.42	0.79	0.204	
1135-1218	1218	H/S	84	1.87	0.99	0.289	1227-59
1590-1661	1637	241/4C	72	1.64	0.70	0.191	spring 1662
908-1145			238	0.65	0.34	0.256	after 1159
-		H/S	49	1.99	0.87	0.320	
1134-1224	1224	H/S	91	1.98	0.94	0.238	1233-65
-		H/S	51	1.82	0.34	0.159	
1143-1216			74	1.81	0.78	0.174	after 1225
1586-1654	1640	14	69	1.98	0.71	0.198	(1661-82)
1140-1212			73	2.07	1.02	0.173	after 1221
1587-1646	1644	2	60	1.68	0.71	0.221	
1649-1660		+12	12	1.08	0.20	0.213	
1621-1657	1644	13	37	1.15	0.36	0.183	
1646-1661		+161/4C	16	0.74	0.13	0.248	
1587-1661	1644	231/9 C Avg	75	1.53	0.71	0.214	spring 1662
1144-1222	1222	H/S	79	1.40	0.89	0.203	1231-63
1129-1210	1210	H/S	82	2.45	0.83	0.189	1219-51
1147-1213	1213	H/S	67	1.93	0.59	0.241	1222-54
1582-1660	1642	18	79	2.22	0.99	0.206	(1661-82)
1594-1661	1652	9	68	1.86	0.53	0.229	1662-93
-			41	3.54	0.86	0.179	
1178-1230			53	2.80	0.89	0.196	after 1239

Table 1 (continued): Summary of tree-ring dating

Table 1 (continued): Summary of tree-ring dating

[^1]$1 / 4 \mathrm{C}, 1 / 2 \mathrm{C}, \mathrm{C}=$ bark edge present, partial or complete ring: $1 / 4 \mathrm{C}=$ spring (ring not measured); $1 / 2 \mathrm{C}=$ summer/autumn felling (ring not measured); $\mathrm{C}=$ winter felling (ring measured);
H / S bdry = heartwood/sapwood boundary - last heartwood ring date; std devn = standard deviation; mean sens = mean sensitivity; $\mathrm{NM}=$ rings not measured

Table 2: Table of t-values and overlaps of individual samples and site masters from eastern chapels dated independently with a selection of regional chronologies

Masier finishing AD	$\begin{gathered} \text { DUBLINI } \\ , 1306 \end{gathered}$	$\begin{gathered} \text { MCI } \\ 1170 \end{gathered}$	$\underset{1981}{\text { WALES97 }^{1}}$	$\underset{1745}{\text { SALOPYS }}$	$\begin{gathered} \text { BRISTOL } \\ 1320 \end{gathered}$	$\begin{gathered} \text { sount } \\ 1594 \end{gathered}$	$\begin{gathered} \text { PALACE } \\ 1179 \end{gathered}$	$\underset{1981}{\text { EASTMID }}$	$\underset{1975}{\text { SCOTLAND }^{2}}$
scect ${ }^{41}$ AD 122	$\frac{7.52}{112}$	$\frac{8.02}{61}$	$\frac{4.56}{112}$	$\frac{4.50}{112}$	$\frac{5.29}{112}$	$\frac{4.97}{112}$	$\frac{3.09}{70}$	$\frac{3.28}{112}$	$\frac{2.22}{112}$
seecs a(AD) $/ 189$	$\frac{6.54}{97}$	$\frac{3.75}{78}$	$\frac{3.68}{97}$	$\frac{2.38}{97}$	$\frac{336}{97}$	$\frac{3.60}{97}$	$\frac{2.74}{87}$	$\frac{1.96}{97}$	$\frac{1.33}{97}$
$\begin{aligned} & \sec 7 \\ & a A D D I B 9 \end{aligned}$	$\frac{10.30}{195}$	$\frac{7.93}{176}$	$\frac{7.02}{195}$	$\frac{3.43}{195}$	$\frac{6.10}{199}$	$\frac{6.65}{195}$	$\frac{4.43}{185}$	$\frac{4.88}{195}$	$\frac{324}{195}$
sceci2 a AD $1 / 193$	$\frac{10.63}{156}$	$\frac{8.35}{133}$	$\frac{5.09}{156}$	$\frac{3.10}{1.56}$	$\frac{4.24}{156}$	$\frac{5.46}{1.56}$	$\frac{2.87}{142}$	$\frac{3.64}{156}$	$\frac{4.95}{156}$
scect 6 © $A D I^{-s}$	$\frac{5.08}{114}$	$\frac{3.92}{106}$	$\frac{293}{114}$	$\frac{2.57}{114}$	$\frac{2.84}{114}$	$\frac{2.96}{114}$	$\frac{2.14}{114}$	$\frac{2.91}{114}$	$\frac{1.06}{144}$
$\begin{aligned} & \sec 17 \\ & a A_{A D} 1138 \end{aligned}$	$\frac{6.79}{120}$	$\frac{5.95}{120}$	$\frac{4.54}{120}$	$\frac{3.99}{120}$	$\frac{4.75}{120}$	$\frac{4.96}{120}$	$\frac{5.08}{120}$	$\frac{3.99}{120}$	$\frac{2.84}{120}$
seec 9 ${ }^{41}$ AD $116-1$	$\frac{7.44}{123}$	$\frac{7.74}{123}$	$\frac{6.10}{123}$	$\frac{4.86}{123}$	$\frac{6.10}{123}$	$\frac{6.67}{123}$	$\frac{4.51}{123}$	$\frac{5.15}{123}$	$\frac{2.22}{123}$
$\begin{aligned} & \left.\begin{array}{l} \text { secec2l } \\ a H A D \end{array} \right\rvert\, 181 \end{aligned}$	$\frac{6.71}{125}$	$\frac{6.72}{114}$	$\frac{4.73}{125}$	$\frac{4.11}{125}$	$\frac{5.71}{125}$	$\frac{5.83}{125}$	$\frac{3.06}{123}$	$\frac{3.84}{125}$	$\frac{3.15}{125}$
seec22 (uAD $1 / 188$	$\frac{5.85}{103}$	$\frac{4.00}{85}$	$\frac{288}{103}$	$\frac{2.49}{103}$	$\frac{2.16}{103}$	$\frac{2.73}{103}$	$\frac{1.89}{94}$	$\frac{2.65}{103}$	$\frac{1.27}{103}$
scecz3 at 411190	$\frac{5.02}{117}$	$\frac{4,94}{97}$	$\frac{2.80}{117}$	$\frac{1,77}{117}$	$\frac{2.54}{17}$	$\frac{2.62}{117}$	$\frac{2.54}{106}$	$\frac{2.45}{117}$	$\frac{2.50}{117}$
$\sec 24$ at 412020 1020	$\frac{7.34}{151}$	$\frac{5.30}{121}$	$\frac{4.60}{151}$	$\frac{3.28}{151}$	$\frac{4.15}{151}$	$\frac{5.13}{151}$	$\frac{2.18}{130}$	$\frac{3.72}{151}$	$\frac{3.84}{151}$
scec 29 ${ }^{41}$ AD $120 ;$	$\frac{6.57}{54}$	$\frac{3.95}{54}$	$\frac{4.35}{54}$	$\frac{2.90}{54}$	$\frac{3.84}{54}$	$\frac{4.50}{54}$	$\frac{1.87}{54}$	$\frac{2.92}{54}$	$\frac{2.82}{54}$
$\begin{aligned} & \sec 42 \\ & a_{1} A D{ }_{200} \end{aligned}$	$\frac{8.82}{106}$	$\frac{7.21}{68}$	$\frac{5.63}{106}$	$\frac{4.01}{106}$	$\frac{6.02}{106}$	$\frac{5.29}{106}$	$\frac{3.08}{77}$	$\frac{3,99}{106}$	$\frac{3.55}{106}$
$\begin{aligned} & \operatorname{secec43} \\ & a C A D H 9^{-} \end{aligned}$	$\frac{6.58}{196}$	$\frac{5.39}{169}$	$\frac{229}{199}$	$\frac{1.42}{196}$	$\frac{1.75}{196}$	$\frac{2.39}{196}$	$\frac{1.47}{178}$	$\frac{2.59}{196}$	$\frac{3.10}{196}$
	$\frac{8.33}{153}$	$\frac{5.89}{128}$	$\frac{5.51}{153}$	$\frac{3.68}{153}$	$\frac{5.56}{153}$	$\frac{6.32}{153}$	$\frac{2.79}{137}$	$\frac{4.54}{153}$	$\frac{2.81}{153}$
scects	$\frac{6.99}{114}$	$\frac{4.03}{89}$	$\frac{3.50}{114}$	$\frac{2.93}{114}$	$\frac{3.33}{114}$	$\frac{4.07}{114}$	$\frac{1.14}{98}$	$\frac{2.88}{114}$	$\frac{2.18}{114}$
scec47 $a \cdot A D / 156$	$\frac{8.51}{119}$	$\frac{8.56}{119}$	$\frac{5.58}{119}$	$\frac{4.20}{119}$	$\frac{4.98}{119}$	$\frac{5.77}{119}$	$\frac{3.77}{119}$	$\frac{4.58}{119}$	$\frac{2.57}{119}$
scect8 al AD $1 / 68$	$\frac{10.81}{158}$	$\frac{8.00}{158}$	$\frac{8.35}{158}$	$\frac{5.16}{158}$	$\frac{7.45}{158}$	$\frac{8.33}{158}$	$\frac{4.84}{158}$	$\frac{4.17}{158}$	$\frac{3.35}{158}$
scect 9 at AD $1 / 52$	$\frac{5.44}{47}$	$\frac{3.64}{47}$	$\frac{2.60}{47}$	$\frac{0.38}{47}$	$\frac{2.16}{47}$	$\frac{2.43}{47}$	$\frac{2.34}{47}$	$\frac{1.48}{47}$	$\frac{0.56}{47}$
seec54 acid $1 / 80$	$\frac{5.52}{128}$	$\frac{4.60}{118}$	$\frac{3.97}{128}$	$\frac{2.64}{128}$	$\frac{4.40}{128}$	$\frac{4.67}{128}$	$\frac{2.34}{127}$	$\frac{2.49}{128}$	$\frac{0.45}{128}$
$\begin{aligned} & \begin{array}{l} \text { scees5s } \\ \text { atAD } 1885 \end{array} \end{aligned}$	$\frac{6.79}{107}$	$\frac{4.13}{92}$	$\frac{3.54}{107}$	$\frac{2.40}{107}$	$\frac{3.60}{107}$	$\frac{3.84}{107}$	$\frac{1.88}{101}$	$\frac{3.21}{107}$	$\frac{2.89}{107}$
seecs 6 ${ }^{41} 4 \mathrm{AD} 1198$	$\frac{5.51}{147}$	$\frac{6.43}{119}$	$\frac{3.02}{147}$	$\frac{1.78}{147}$	$\frac{2.39}{147}$	$\frac{3.04}{147}$	$\frac{1.92}{128}$	$\frac{2.11}{147}$	$\frac{2.60}{147}$
scec57 al AD 112	$\frac{14.11}{193}$	$\frac{7.21}{193}$	$\frac{10.08}{193}$	$\frac{5.81}{193}$	$\frac{8.51}{193}$	$\frac{9.60}{193}$	$\frac{4.29}{193}$	$\frac{5.70}{193}$	$\frac{4.29}{176}$
scec61 at $A D 11-9$	$\frac{5.67}{110}$	$\frac{2.41}{101}$	$\frac{3.34}{110}$	$\frac{1.33}{110}$	$\frac{2.80}{110}$	$\frac{3.19}{110}$	$\frac{2.22}{110}$	$\frac{2.02}{110}$	$\frac{1.62}{110}$
$\begin{aligned} & \operatorname{secec62} \\ & a t A D / 183 \end{aligned}$	$\frac{6.98}{150}$	$\frac{6.98}{137}$	$\frac{3.19}{150}$	$\frac{1.15}{150}$	$\frac{2.70}{150}$	$\frac{2.93}{150}$	$\frac{1.03}{146}$	$\frac{3.66}{150}$	$\frac{3.49}{150}$
	$\frac{5.58}{160}$	$\frac{4.35}{154}$	$\frac{2.58}{160}$	$\frac{1.32}{160}$	$\frac{3.22}{160}$	$\frac{2.71}{160}$	$\frac{1.60}{160}$	$\frac{191}{160}$	$\frac{1.67}{160}$
scec70 at AD 1030	$\frac{8.49}{123}$	$\frac{3.40}{123}$	$\frac{6.55}{123}$	$\frac{3.97}{123}$	$\frac{5.66}{123}$	$\frac{4.84}{123}$	$\frac{3.22}{123}$	$\frac{4.29}{123}$	$\frac{3.21}{85}$
scec71 ${ }^{41}$ AD 1165	$\frac{5.98}{157}$	$\frac{4.84}{157}$	$\frac{4.32}{157}$	$\frac{3.24}{157}$	$\frac{4.12}{157}$	$\frac{4.14}{157}$	$\frac{4.28}{157}$	$\frac{1.57}{157}$	$\frac{2.37}{157}$

[^2]| Master
 fmishing AD | $\begin{aligned} & \text { DUBLINI I } \\ & \hline 1306 \end{aligned}$ | $\begin{gathered} M C 13 \\ 1170 \end{gathered}$ | $\begin{gathered} \text { WALESS97 } \\ 1981 \end{gathered}$ | $\begin{gathered} \text { SALOP95 } \\ { }_{1745} \end{gathered}$ | $\begin{gathered} \text { BRISTOL } \\ 1320 \end{gathered}$ | $\underset{1594}{\text { SOUTH }}$ | $\begin{gathered} \text { PALACE } \\ 1179 \end{gathered}$ | ${ }_{1981}^{\text {EASTMID }}$ | $\begin{gathered} \text { SCOTLAND } \\ 1975 \end{gathered}$ | sCecire 28 -timber Irish mean | Sarumz 5 -timber South mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| scecl
 at A1)/221 | $\frac{5.64}{1.69}$ | $\frac{3.96}{118}$ | $\frac{5.01}{109}$ | $\frac{3.69}{169}$ | $\frac{5.27}{169}$ | $\frac{5.21}{169}$ | $\frac{0.92}{127}$ | $\frac{3.98}{169}$ | $\frac{228}{169}$ | $\frac{8.61}{169}$ | $\frac{2.02}{108}$ |
| scec?
 a1 $A 1122]$ | $\frac{4.87}{147}$ | $\frac{4.47}{96}$ | $\frac{3.38}{147}$ | $\frac{278}{147}$ | $\frac{282}{147}$ | $\frac{3.93}{147}$ | $\frac{2.11}{105}$ | $\frac{4.02}{147}$ | $\frac{2.20}{147}$ | $\frac{8.02}{147}$ | $\frac{2.99}{108}$ |
| seec 9
 ${ }^{11}$ AD 1199 | $\frac{5.41}{1.166}$ | $\frac{4.85}{127}$ | $\frac{5.17}{156}$ | $\frac{3.96}{156}$ | $\frac{5.56}{156}$ | $\frac{5.48}{156}$ | $\frac{2.62}{136}$ | $\frac{3.98}{156}$ | $\frac{3.69}{156}$ | $\frac{7.75}{156}$ | $\frac{2.48}{94}$ |
| scecso
 a1 A1) 1193 | $\frac{7.05}{164}$ | $\frac{4.82}{141}$ | $\frac{6.67}{164}$ | $\frac{5.38}{164}$ | $\frac{6.95}{164}$ | $\frac{7.66}{164}$ | $\frac{2.93}{150}$ | $\frac{5.52}{164}$ | $\frac{3.46}{164}$ | $\frac{8.42}{164}$ | $\frac{5.87}{88}$ |
| scectil
 ai AD / 190 | $\frac{5.27}{118}$ | $\frac{2.76}{98}$ | $\frac{4.33}{118}$ | $\frac{3.89}{118}$ | $\frac{4.43}{118}$ | $\frac{4.55}{118}$ | $\frac{1.87}{107}$ | $\frac{2.53}{118}$ | $\frac{1.51}{118}$ | $\frac{5.78}{1118}$ | $\frac{4.55}{85}$ |
| scect 6
 al AD) $11+1$ | $\frac{5.82}{103}$ | $\frac{7.29}{103}$ | $\frac{4.93}{103}$ | $\frac{3.92}{103}$ | $\frac{6.10}{103}$ | $\frac{6.15}{103}$ | $\frac{2.76}{103}$ | $\frac{4.41}{103}$ | $\frac{3.06}{103}$ | $\frac{10.88}{103}$ | $\frac{1.49}{39}$ |
| scecs2
 at AD 1195 | $\frac{6.30}{144}$ | $\frac{4.30}{119}$ | $\frac{4.67}{144}$ | $\frac{3.54}{144}$ | $\frac{5.28}{144}$ | $\frac{5.27}{144}$ | $\frac{1.36}{128}$ | $\frac{2.76}{144}$ | $\frac{290}{144}$ | $\frac{9.79}{144}$ | $\frac{185}{90}$ |
| $\begin{aligned} & \text { secs3 } \\ & \text { acAD } 1191 \end{aligned}$ | $\frac{7.24}{143}$ | $\frac{5.70}{122}$ | $\frac{6.89}{143}$ | $\frac{5.77}{143}$ | $\frac{7,71}{143}$ | $\frac{8.12}{143}$ | $\frac{3.83}{131}$ | $\frac{5.15}{143}$ | $\frac{275}{143}$ | $\frac{9.99}{143}$ | $\frac{4.36}{86}$ |
| scecs 9
 a\| AD $1 / 118$ | $\frac{6.91}{76}$ | $\frac{5.81}{76}$ | $\frac{6.13}{76}$ | $\frac{4.39}{76}$ | $\frac{6.33}{76}$ | $\frac{7.08}{76}$ | $\frac{3.06}{76}$ | $\frac{4.64}{76}$ | $\frac{5.32}{76}$ | $\frac{8.58}{76}$ | $\frac{0.00}{13}$ |
| ${ }^{\text {seece64 }}$ | $\frac{6.82}{136}$ | $\frac{6.11}{136}$ | $\frac{6.08}{136}$ | $\frac{4.44}{136}$ | $\frac{5.15}{136}$ | $\frac{6.02}{136}$ | $\frac{2.12}{136}$ | $\frac{3.83}{136}$ | $\frac{328}{136}$ | $\frac{6.89}{136}$ | $\frac{1.43}{51}$ |
| scee6s
 al AD $1 / 08$ | $\frac{5.86}{71}$ | $\frac{5.51}{71}$ | $\frac{4.29}{71}$ | $\frac{2.76}{71}$ | $\frac{5.46}{71}$ | $\frac{6.12}{71}$ | $\frac{1.58}{71}$ | $\frac{2.56}{71}$ | $\frac{368}{71}$ | $\frac{5.68}{71}$ | $\frac{0.00}{0}$ |

Samples matching best with miscellaneous individual samples and chronologies

Master jinishing AD	$\begin{gathered} \text { DUBLINI } \\ 1306 \end{gathered}$	$\begin{gathered} M C 13 \\ 1170 \end{gathered}$	$\begin{gathered} \text { WALESS7 } \\ 1981 \end{gathered}$	$\begin{aligned} & \text { SALOP95 } \\ & 1745 \end{aligned}$	$\begin{gathered} \text { BRISTOL } \\ 1320 \end{gathered}$	$\begin{gathered} \text { sOUTH } \\ 1594 \end{gathered}$	$\begin{gathered} \text { PALACE } \\ 1179 \end{gathered}$	$\begin{aligned} & \text { EASTMID } \\ & 1981 \end{aligned}$	$\underset{\text { 1975 }}{\operatorname{scotLAND}}$	28-timber lrish mean	5 -timber South me
scees ${ }^{a}{ }^{1}$ AD 1212	$\frac{3.97}{70}$	$\frac{2.14}{28}$	$\frac{4.84}{70}$	$\frac{3.82}{70}$	$\frac{2.00}{70}$	$\frac{3.61}{70}$	$\frac{1.46}{37}$	$\frac{3.92}{70}$	$\frac{3.77}{70}$	$\frac{1.38}{70}$	$\frac{3.75}{70}$
scec 13 ar AD $1 / 60$	$\frac{281}{134}$	$\frac{2.25}{99}$	$\frac{2.62}{134}$	$\frac{3.15}{134}$	$\frac{2.18}{134}$	$\frac{2.63}{134}$	$\frac{0.77}{108}$	$\frac{3.33}{134}$	$\frac{0.36}{134}$	$\frac{4.39}{54}$	$\frac{1.81}{54}$
	$\frac{3.65}{115}$	$\frac{0.75}{89}$	$\frac{2.77}{115}$	$\frac{3.10}{115}$	$\frac{2.91}{115}$	$\frac{3.33}{115}$	$\frac{0.10}{98}$	$\frac{2.01}{111}$	$\frac{0.00}{115}$	$\frac{4.96}{115}$	$\frac{194}{91}$
$\begin{aligned} & \operatorname{scec} 66 \\ & a(A) 1 / 98 \end{aligned}$	$\frac{3.99}{78}$	$\frac{3.17}{50}$	$\frac{4.60}{78}$	$\frac{3.63}{78}$	$\frac{3.35}{78}$	$\frac{3.93}{78}$	$\frac{1.41}{59}$	$\frac{3.71}{78}$	$\frac{0.86}{78}$	$\frac{4.58}{78}$	$\frac{494}{78}$
ec67	4.12	3.78	3.34	3.51	3.58	4.31	2.89	4.52	0.00	4.86	2.84

										scecire	SARUMz
Master funishing AD	$\begin{gathered} \text { DUBLINI } \\ 1396 \end{gathered}$	$\begin{gathered} M C 13 \\ 11170 \end{gathered}$	$\begin{aligned} & \text { WALESS97 } \\ & 1988 \end{aligned}$	SALOP95	${ }_{\text {BKistoL }}^{13720}$	$\underset{\text { is94 }}{\text { south }}$	$\begin{aligned} & \text { PALACE } \\ & 11779 \end{aligned}$	$\underset{1981}{\text { EASTMID }}$	$\underset{{ }_{1975}}{\operatorname{sCOTLAND}}$	28 -timber rrish mean	$\begin{gathered} \text { S-timber } \\ \text { South mearn } \end{gathered}$
scecit ${ }^{a}$ a $A D 1198$	$\frac{3.81}{73}$	$\frac{0.93}{45}$	$\frac{3.84}{73}$	$\frac{3.04}{73}$	$\frac{4.14}{73}$	$\frac{4.27}{73}$	$\frac{1.56}{54}$	$\frac{2.19}{73}$	$\frac{1.26}{73}$	$\frac{3.27}{73}$	
$\begin{aligned} & \sec 20 \\ & a t A D H 99 \end{aligned}$	$\frac{6.47}{55}$	$\frac{2.28}{26}$	$\frac{7.27}{55}$	$\frac{5.79}{55}$	$\frac{6.74}{55}$	$\frac{7.71}{55}$	$\frac{1.15}{35}$	$\frac{6.83}{55}$	$\frac{3.61}{55}$	$\frac{4.33}{55}$	
scec3 1 ${ }^{a}$ ad 1201	$\frac{4.60}{77}$	$\frac{2.19}{46}$	$\frac{4.87}{77}$	$\frac{3.95}{77}$	$\frac{5.67}{77}$	$\frac{6.34}{77}$	$\frac{1,92}{55}$	$\frac{4.68}{77}$	$\frac{1.11}{77}$	$\frac{4.86}{77}$	
$\sec 63$ $\operatorname{cat} 1212 a l$	$\frac{4.64}{96}$	$\frac{197}{65}$	$\frac{4.75}{96}$	$\frac{3.73}{96}$	$\frac{5.06}{96}$	$\frac{5.76}{96}$	$\frac{3.99}{74}$	$\frac{3.71}{96}$	$\frac{0.85}{96}$	$\frac{3.86}{96}$	
${ }_{\substack{\text { scec72 } \\ a \sim A D 1213}}$	$\frac{4.90}{47}$	$\frac{0.00}{0}$	$\frac{4.78}{47}$	$\frac{4.22}{47}$	$\frac{3.03}{47}$	$\frac{5.54}{47}$	$\frac{0.90}{13}$	$\frac{5.67}{47}$	$\frac{2.61}{47}$	$\frac{2.09}{47}$	

Cross-matching of SARUM1 and SARUM2 site masters with reference chronologies

										SCECIRE	run
Master finishing $A D$	${ }_{1306}^{\text {DUBLINI }}$	$\begin{gathered} \text { MCl3 } \\ 1170 \end{gathered}$	$\underset{1981}{W_{A L E S 97}}$	$\underset{1745}{\text { SALOP95 }}$	$\begin{gathered} \text { BRISTOL } \\ 1320 \end{gathered}$	$\underset{\substack{\text { SOUTH } \\ \text { IS94 }}}{\text { SOUTH }}$	$\begin{array}{r} P_{A L L A C E} \\ 1179 \end{array}$	$\underset{1981}{\text { EASTMID }}$	$\underset{\text { 1975 }}{\text { SCOTLAND }}$	28-timber Irish mean	5-timber South mean
$\begin{aligned} & \text { SARUMI } \\ & { }_{\text {SHAD } 1221} \end{aligned}$	$\frac{18.02}{314}$	$\frac{9.44}{263}$	$\frac{10.38}{314}$	$\frac{6.71}{314}$	$\frac{9.45}{314}$	$\frac{9.64}{314}$	$\frac{5.14}{272}$	$\frac{7.46}{314}$	$\frac{5.86}{276}$		$\frac{4.13}{108}$
SARUM2 at $A D / 213$	$\frac{5.97}{108}$	$\frac{1.47}{65}$	$\frac{6.40}{108}$	$\frac{4.77}{108}$	$\frac{6.92}{108}$	$\frac{7.75}{108}$	$\frac{2.83}{74}$	$\frac{6.17}{108}$	$\frac{2.16}{108}$	$\frac{3.88}{108}$	

 seecl2 $\frac{5.37}{114} \frac{6.50}{101} \frac{6.76}{123} \frac{8.02}{125} \frac{9.53}{103} \frac{9.63}{17} \frac{9.92}{144} \frac{8.33}{122} \frac{8.29}{99} \frac{6.34}{156} \frac{8.06}{151} \frac{12.87}{127} \frac{9.16}{19} \frac{6.79}{131} \frac{8.30}{47} \frac{5.15}{128} \frac{8.83}{107} \frac{8.78}{142} \frac{6.24}{84} \frac{6.55}{110} \frac{1175}{146} \frac{5.39}{139} \frac{0.00}{0} \frac{6.88}{128}$

 scec21 $\frac{5.90}{96} \frac{6.29}{108} \frac{7.14}{125} \frac{7.28}{110} \frac{8.59}{79} \frac{5.53}{125} \frac{5.19}{125} \frac{8.82}{100} \frac{6.72}{100} \frac{4.96}{112} \frac{3.35}{47} \frac{5.08}{124} \frac{7.36}{103} \frac{5.57}{125} \frac{3.85}{65} \frac{5.07}{110} \frac{5.23}{125} \frac{4.59}{120} \frac{0.00}{0} \frac{3.84}{109}$ scecz2 $\frac{5.04}{103} \frac{7.79}{103} \frac{6.54}{103} \frac{5.94}{86} \frac{5.43}{103} \frac{6.62}{103} \frac{7.73}{103} \frac{6.76}{71} \frac{4.58}{83} \frac{5.35}{47} \frac{6.39}{95} \frac{794}{100} \frac{7.707}{103} \frac{1.05}{36} \frac{5.95}{94} \frac{7.48}{98} \frac{4.82}{91} \frac{0.00}{0} \frac{5.80}{80}$
sece23 $\frac{5.90}{17} \frac{4.18}{17} \frac{4.19}{88} \frac{5.25}{17} \frac{3.81}{17} \frac{8.36}{109} \frac{6.60}{83} \frac{4.13}{95} \frac{4.59}{47} \frac{3.23}{107} \frac{4.50}{107} \frac{4.83}{17} \frac{2.63}{48} \frac{4.27}{106} \frac{7.63}{10} \frac{4.25}{103} \frac{0.00}{0} \frac{4.47}{92}$

sece43 $\frac{5.23}{153} \frac{5.04}{14} \frac{509}{119} \frac{4.14}{158} \frac{2.30}{47} \frac{5.53}{128} \frac{4.59}{107} \frac{10.07}{146} \frac{3.37}{120} \frac{4.24}{10} \frac{5.36}{150} \frac{5.97}{157} \frac{0.76}{2} \frac{1.90}{10}$

seect5 $\frac{6.61}{75} \frac{3.95}{87} \frac{5.29}{47} \frac{4.66}{99} \frac{9.28}{104} \frac{5.40}{114} \frac{3.71}{40} \frac{6.68}{98} \frac{8.80}{102} \frac{4.09}{95} \frac{0.00}{0} \frac{4.29}{84}$

 ecabt $\frac{450}{10} \frac{40}{10} \frac{0.060}{109} \frac{207}{20}$

exace $\frac{0.00}{14} \frac{1256}{\frac{125}{156}}$

$\frac{112}{1159} 9$	
$\frac{551}{137} \frac{4.7}{11}$	
$\frac{3.98}{12} \frac{5.7}{90}$	
$\frac{702}{125} \frac{566}{10}$	
$\frac{6.59}{103} \frac{8.60}{10}$ 4.47 157 17	
$\begin{aligned} & \frac{44}{17} \frac{3.46}{116} \\ & 7028 \end{aligned}$	
$\frac{688}{134} \frac{9.4}{13}$	
$\frac{497}{106} \frac{4.15}{106}$	
$\frac{511}{143} \frac{5}{12}$	
$\frac{703}{114} \frac{6.81}{114}$	
$\frac{4.80}{104} \frac{6.78}{82}$	
$\frac{569}{128} \frac{6.88}{100}$	
$\frac{4.65}{131} \frac{6.8}{10}$	
$\frac{3.82}{124} \frac{3.5}{102}$	
$\frac{0.00}{0} \frac{0.0}{0}$	
$\frac{3.96}{113} \frac{5 .}{91}$	

Samples matching equally well with
Southern England, Wales, and Ireland

Samples with poor
individual mach

individual matches
$13 \quad 25 \quad 66$
67

$\begin{array}{lllll}14 & 20 & 31 & 63 & 72 \\ 198 & 1199 & 1201 & 1201\end{array}$
$\frac{3.36}{84} \frac{2.98}{81} \quad 7.24 \quad 651191111811561108$ $\frac{0.00}{0} \quad \frac{188}{70} \quad \frac{2.87}{51} \quad \frac{228}{87} \quad \frac{477}{78} \quad \frac{413}{55}$ $\frac{8.47}{97} \quad \frac{5.78}{97} \quad \frac{4.78}{97} \quad \frac{58}{52} \quad \frac{772}{97} \quad \frac{6.12}{97} \quad \frac{1.39}{26} \quad \frac{2.59}{64} \quad \frac{2.82}{16}$ $\left.\frac{4.78}{115} \frac{5.09}{146} \frac{6.56}{160} \frac{4.91}{117} \frac{5.59}{103} \frac{3.32}{138} \frac{745}{141} \frac{7.12}{76} \quad \frac{6.08}{136} \quad \frac{3.16}{71} \right\rvert\,$ $\frac{9.32}{119} \frac{6.48}{150} \frac{4.86}{156} \frac{3.98}{118} \frac{7.79}{103} \frac{7.88}{142} \frac{6.75}{143} \frac{6.72}{76} \frac{4.11}{119} \frac{4.12}{7}$ $\begin{array}{llllllllll}\frac{8.87}{14} & \frac{5.07}{104} & \frac{4.19}{114} & \frac{2.66}{114} & \frac{2.10}{106} & \frac{3.54}{80} & \frac{4.11}{114} & \frac{7.06}{114} & \frac{3.32}{54} & \frac{4.06}{92}\end{array} \frac{0.46}{44}$
 $\frac{38}{12} \frac{5.70}{90} \frac{2.42}{121} \frac{5.48}{123} \frac{3.66}{92} \frac{7.53}{103} \frac{4.44}{113} \frac{5.93}{116} \frac{4.40}{76} \frac{3.94}{115} \frac{5.82}{67}$ $\frac{5.61}{107} \frac{8.14}{125} \frac{5.21}{125} \frac{3.68}{109} \frac{6.44}{89} \frac{6.47}{125} \frac{6.62}{125} \frac{4.41}{62} \quad \frac{4.40}{100} \frac{172}{52}$ $\frac{8.65}{103} \frac{6.11}{103} \frac{3.71}{103} \frac{3.17}{103} \frac{5.50}{59} \frac{6.58}{103} \frac{6.05}{103} \frac{1.33}{33} \frac{1.77}{71} \frac{0.64}{23}$ $\frac{4.01}{17} \frac{230}{17} \frac{144}{117}$ $\frac{6.71}{71} \frac{4.03}{17} \frac{3}{11}$
$\frac{3.29}{17} \frac{3.56}{45} \frac{2.26}{83}$
$\frac{5.54}{150} \frac{4.80}{144} \frac{3.75}{118}$
$\frac{751}{73} \frac{70}{124}$
$\frac{7.03}{124} \frac{6.72}{120} \frac{3.71}{4}$
$\frac{1}{91}$
 $\frac{6.27}{114} \frac{4.50}{112} \frac{4.23}{109} \frac{5.10}{63} \frac{6.84}{114} \frac{470}{110} \frac{3.06}{37} \frac{2.79}{75} \frac{0.81}{27}$ $\begin{array}{llllllll}\frac{5.66}{115} & \frac{439}{119} & \frac{4.42}{84} & \frac{6.32}{103} & \frac{4.97}{105} & \frac{6.53}{108} & \frac{6.20}{76} & \frac{5.12}{119} \\ \frac{3.46}{71}\end{array}$
$\begin{array}{lllllllllll}1.90 & \frac{4.11}{96} & \frac{4.88}{103} & \frac{5.32}{117} & \frac{729}{12} & \frac{438}{36} & \frac{9.20}{12} & \frac{3.87}{7}\end{array}$ $\begin{array}{ccccccccc}125 & 139 & 96 & 103 & 117 & 120 & 76 & 136 & 71 \\ \frac{3.29}{47} & \frac{2.66}{47} & \frac{126}{47} & \frac{4.87}{39} & \frac{4.14}{47} & \frac{5.16}{47} & \frac{3.00}{13} & \frac{1.60}{47} & \frac{0.00}{0}\end{array}$
> $\frac{672}{128} \frac{7.48}{108} \frac{6.90}{92} \quad \frac{732}{128} \quad \frac{6.41}{128} \quad \frac{215}{66} \frac{5.44}{104} \frac{3.30}{56}$

$\frac{55}{107} \frac{5.00}{107} \frac{4.44}{107} \frac{5.76}{66} 6 \frac{6.20}{107} \frac{5.01}{107} \frac{4.68}{40} \frac{2.38}{78} \frac{2.91}{30}$ $\frac{6.98}{124} \frac{5.55}{147} \frac{4.04}{142} \frac{2.16}{118} \frac{9.21}{93} \frac{6.12}{144} \frac{4.37}{140} \frac{4.73}{67} \quad \frac{4.21}{105} \frac{4.52}{57}$ $\frac{3.21}{47} \quad \frac{2.88}{78} \quad \frac{4.10}{92} \quad \frac{230}{49} \frac{4.30}{80} \frac{3.45}{70} \frac{6.11}{73} \frac{11.69}{76} \frac{6.40}{101} \frac{5}{7}$ $\frac{7.19}{105} \frac{4.81}{10} \quad \frac{7.27}{10} \frac{3.54}{107} \quad \frac{6.25}{75} \frac{4.20}{110} \frac{4.76}{10} \quad \frac{3.35}{49} \quad \frac{2.57}{87} \quad \frac{1.20}{30}$
 $\frac{3.57}{102} \frac{3.43}{133} \frac{4.97}{147} \frac{4.52}{104} \frac{5.90}{103} \frac{6.29}{125} \frac{5.57}{128} \frac{5.38}{76} \frac{4.98}{136} \frac{6.22}{71}$ $\frac{22}{136} \frac{2.00}{93} \frac{3.86}{103} \frac{4.89}{114} \frac{4.88}{117} \frac{3.74}{76} \quad \frac{2.99}{136} \frac{3.97}{71}$ $\frac{6.89}{147} \frac{12.29}{147} \frac{6.00}{141} \frac{4.46}{118} \frac{7.55}{92} \frac{12.51}{143} \frac{7.41}{139} \frac{3.19}{66} \quad \frac{5.08}{104} \frac{195}{56} \quad \frac{0.92}{70} \quad \frac{2.78}{54} \frac{5.20}{115} \frac{3.77}{78} \frac{2.27}{62}$

seec52 $\frac{8.16}{140} \frac{3.90}{67} \frac{5.38}{105} \frac{4.93}{57} \frac{1.24}{53} \quad \frac{2.16}{54} \frac{5.28}{114} \frac{3.69}{75} \frac{1.57}{62} \frac{2.24}{70} \quad \frac{1.84}{51} \frac{3.56}{71} \frac{2.44}{90} \frac{1.17}{29}$ seces 5

scecs9 $\frac{3.76}{76} \frac{5.62}{66} \frac{0.00}{0} \frac{0.46}{12} \frac{0.00}{37} \frac{0.00}{0} \frac{1.32}{16} \frac{0.00}{0} \frac{0.00}{0} \quad \frac{0.00}{0} \frac{0.00}{13} \frac{0.00}{0}$ seces 9

$\sec 65 \frac{0.00}{0} \frac{0.00}{0} \frac{1.57}{27} \frac{0.00}{0} \frac{0.00}{6} \frac{0.00}{0} \frac{0.00}{0} \frac{0.00}{0} \frac{0.00}{0} \frac{0.00}{0}$ sece6s

Table 4: Matrix of t-values and overlaps for components of scecll

Sample: Last ring date AD:	scec11b 1065	scec11c 1073
scec11a	$\frac{\mathbf{1 2 . 5 2}}{\mathbf{4 3}}$	$\frac{\mathbf{2 . 4 5}}{7}$
	scec11b	$\frac{\mathbf{7 . 0 2}}{\mathbf{2 7}}$

Table 5: Matrix of t-values and overlaps for components of scec2

| Sample:
 Last ring date
 AD: | scec2a2 | 1188 |
| :---: | :---: | :---: | | scec 2b |
| :---: |
| scec2al |

Table 6: Matrix of t-values and overlaps for components of scec3

Sample: Last ring date AD:	scec 3b 1222	scec3c 1222
scec3a	$\frac{\mathbf{1 2 . 2 5}}{\mathbf{6 9}}$	$\frac{\mathbf{8 . 6 7}}{\mathbf{7 7}}$
	scec3b	$\underline{\mathbf{8 . 4 3}}$

Table 7: Matrix of t-values and overlaps for components of scec 5

Sample:	scec5b	scec5c
Last ring date	1185	1185
AD:		
scec5a	$\frac{15.80}{90}$	$\frac{17.70}{90}$
	scec5b	$\frac{\mathbf{2 3 . 1 0}}{90}$

Table 8: Matrix of t-values and overlaps for components of scec 7

Sample:	scec 7 b	scec 7 c
$\begin{gathered} \text { Last ring date } \\ A D: \end{gathered}$	1136	1186
scec 70	$\underline{20.16}$	5.44
	140	49
	scec 7 b	0.00
		0

Table 9: Matrix of t-values and overlaps for components of scec15

Sample: Last ring date AD:	scec15az	1066	scec15bi
scec15ai	$\frac{3.08}{49}$	$\frac{\mathbf{4 . 1 3}}{23}$	scec15bz scec15az
		$\underline{0.16}$	
		scec15bi	$\frac{\mathbf{9 . 5 4}}{\mathbf{5 0}}$
			$\frac{3.50}{53}$

Table 10: Matrix of t-values and overlaps for components of scec24

Sample:	scec24ai	scec24b
Last ring date	1200	1199
$A D:$		
scec24a	$\frac{0.00}{0}$	$\frac{19.79}{108}$
	scec24ai	$\frac{\mathbf{1 0 . 4 2}}{22}$

Table 11: Matrix of t-values and overlaps for components of scec31

Sample:	scec31b	scec31c
Last ring date	1201	1200
AD:		
scec31a	$\frac{16.28}{55}$	$\frac{\mathbf{3 . 6 0}}{\mathbf{2 0}}$
	scec31b	$\frac{\mathbf{5 . 1 8}}{\mathbf{3 3}}$

Table 12: Matrix of t-values and overlaps for components of scec53

Sample:	scec53b1	scec53b2
Last ring date	1120	1191
AD:		
scec53a	$\frac{\mathbf{1 2 . 8 9}}{58}$	$\frac{\mathbf{1 1 . 1 5}}{\mathbf{1 8}}$
	scec53b1	$\frac{0.00}{0}$

Table 13: Combining of multiple radii from individual samples to form same-timber means

Samples:	t-value:	overlap:	combinedmean:
scecla + sceclb	6.05	15	scec1
scec4a + scec4b	10.98	30	scec4
scec18a + scec18b	10.71	69	scec18
scec26a + scec26b	5.83	45	scec26
scec71a + scec71b	19.72	116	scec71
scec4Ia + scec41b	9.91	111	scec41
scec49a + scec49bI	18.91	42	scec49
scec60a + scec60b	6.67	127	scec60

Table 14: Matrix of t-values and overlaps for components of scnt05

Sample: Last ring date AD:	scnt05b	1254	scnt05c
scnt05a	$\frac{\mathbf{3 . 8 4}}{\mathbf{1 7}}$	$\frac{\mathbf{4 . 6 3}}{7}$	scnt05d
	scnt05b	$\frac{1.92}{20}$	$\frac{0.00}{0}$
		scnt05c	$\frac{2.90}{16}$
			$\frac{\mathbf{5 . 0 1}}{7}$

Table 15: Matrix of t-values and overlaps for components of scnt42

Sample:	scnt42b	scnt42c
Last ring date	1222	1235
AD:		
scnt42a	$\frac{10.23}{44}$	$\frac{6.71}{47}$
	scnt42b	$\frac{\mathbf{8 . 7 1}}{48}$

Table 16: Matrix of t-values and overlaps for components of scnt44

Sample:	scnt44b	scnt44c
Last ring date $A D:$	1226	1241
scnt44a	$\frac{\mathbf{8 . 8 2}}{\mathbf{8 2}}$	$\frac{\mathbf{1 8 . 6 1}}{\mathbf{4 3}}$
	scnt44b	$\frac{\mathbf{1 4 . 7 4}}{\mathbf{3 6}}$

Table 17: Combining of multiple radii from individual samples to form same-timber means

Samples:	t-value:	overlap:	combinedmean:
scnt09i + scnt09ii	3.47	7	scntog
scnt10a + scnt10b	16.80	36	scntlo
scnt15a + scnt15b	2.38	33	scnt15
scntl7a + scntl7b	15.44	63	scnt17
scnt41a + scnt41b	9.50	47	scnt41
scnt46a + scnt46b	12.41	39	scnt46
$s c l 104 a+s c l 104 b$	5.84	44	scl104

Table 18: Combining of individual samples to form same-tree means

Samples:	t-value:	overlap:	combinedmean:
scnt02 + scnt04	14.07	133	scnt024
scnt43 + scnt46	9.77	77	$\boldsymbol{s c n t 4 3 6}$
scl104 + scnt03	11.57	93	scl10403

Table 19: Matrix of t-values and overlaps for components of scll023

Sample:	scllo2b	scllo3
Last ring date	1224	1238
AD:		
scllo2a	$\frac{1.94}{9}$	$\frac{0.00}{9}$
	scllo2b	$\frac{11.32}{39}$

Table 20: Matrix of t-values and overlaps for components of SARUM3x

Sample:	scl10403	sclios	scmor	scht024	scmas	scht07	schto9	scntll	scnt13	scnt14	scnt16	scmt7	sent18	scntig	scnt23	scnt26	scmi30	scnt32	scni34	scn36	scni37	cnt3	scri41	${ }^{\text {chit } 2}$	cn4436	scm4
$\begin{aligned} & \text { Last ring } \\ & \text { date AD: } \end{aligned}$	1226	1170	1238	1223	1254	1200	1233	1230	1235	1193	1182	1231	1227	1220	1225	1218	1224	1216	1212	1222	1210	1213	1248	1235	1251	124
scl1023	9.74	6.30	1.97	9.13	7.49	2.21	$\frac{1.88}{108}$	3.64	$\frac{2.95}{86}$	$\frac{1.93}{82}$	1.02	4.33	3.07	1.18	$\underline{0.90}$	$\frac{2.12}{84}$	3.60	$\frac{1.90}{74}$	1.48	$\frac{3.17}{79}$	1.18	0.88	$\frac{3.99}{112}$	1.81	33.35	3.37
1238	143	99	107	152	98	66	109	95	86	82	40	88	89	82	83	84	91	74	73	79	82	67	112	70	67	100
	scl10403	7.10	4.79	9.02	7.22	3.02	3.48	4.36	3.80	3.34	3.70	5.87	6.75	2.46	$\underline{2.42}$	1.85	4.19	4.24	3.84	4.95	$\frac{3.67}{82}$	$\frac{2.94}{67}$	$\frac{3.91}{100}$	$\frac{3.03}{61}$	5.15	$\frac{3.01}{88}$
		87	9	140	86	66		1																		88
		$\begin{gathered} \text { sclitas } \\ 1170 \end{gathered}$	$\frac{0.00}{39}$	$\frac{14.16}{99}$	$\frac{3.10}{30}$	$\frac{0.00}{36}$	$\frac{2.36}{46}$	$\frac{3.11}{35}$	$\frac{3.56}{21}$	$\frac{2.71}{59}$	$\frac{1.43}{28}$	$\frac{1.49}{27}$	$\frac{1.43}{32}$	$\frac{2.10}{32}$	$\frac{0.00}{28}$	$\frac{0.00}{36}$	$\frac{1.75}{37}$	$\frac{1.11}{28}$	$\frac{1.33}{31}$	$\frac{0.44}{27}$	$\frac{0.74}{42}$	$\frac{0.90}{24}$	$\frac{0.42}{44}$	$\frac{0.00}{0}$	$\frac{0.00}{0}$	$\frac{0.14}{32}$
			$\begin{gathered} \text { schtol } \\ 1238 \end{gathered}$	$\frac{3.33}{92}$	$\frac{2.01}{98}$	$\frac{3.72}{66}$	$\frac{2.78}{102}$	$\frac{226}{95}$	$\frac{1.62}{86}$	$\frac{1.93}{62}$	$\frac{3.04}{40}$	$\frac{6.27}{88}$	$\frac{3.82}{89}$	$\frac{3.55}{82}$	$\frac{3.77}{83}$	$\frac{4.31}{84}$	$\frac{3.12}{91}$	$\frac{4.03}{74}$	$\frac{3.62}{73}$	$\frac{3.87}{79}$	$\frac{2.65}{79}$	$\frac{3.12}{67}$	$\frac{1.29}{107}$	$\frac{4.33}{70}$	$\frac{2.56}{67}$	$\frac{1.11}{100}$
				$\begin{gathered} \text { scnt024 } \\ 1223 \end{gathered}$	$\frac{7.32}{83}$	$\frac{1.60}{66}$	$\frac{2.57}{99}$	$\frac{5.25}{88}$	$\frac{6.53}{74}$	$\frac{5.67}{82}$	$\frac{3.82}{40}$	$\frac{4.72}{80}$	$\frac{4.03}{85}$	$\frac{3.37}{82}$	$\frac{1.58}{81}$	$\frac{1.59}{84}$	$\frac{2.38}{90}$	$\frac{3.62}{74}$	$\frac{1.49}{73}$	$\frac{2.58}{79}$	$\frac{3,35}{82}$	$\frac{1.15}{67}$	$\frac{1.42}{97}$	$\frac{4.14}{58}$	$\frac{2.10}{52}$	$\frac{1.43}{85}$
					$\begin{gathered} \text { scntos } \\ 1254 \end{gathered}$	$\frac{1.24}{60}$	$\frac{2.28}{93}$	$\frac{4.33}{90}$	$\frac{3.72}{86}$	$\frac{2.51}{53}$	$\frac{3.56}{40}$	$\frac{5.09}{88}$	$\frac{5.28}{87}$	$\frac{3.18}{80}$	$\frac{2.27}{83}$	$\frac{3.07}{78}$	$\frac{4.38}{84}$	$\frac{4.22}{74}$	$\frac{2.40}{72}$	$\frac{5.01}{79}$	$\frac{3.25}{70}$	$\frac{3.21}{67}$	$\frac{3.82}{108}$	$\frac{3.93}{70}$	$\frac{3.47}{80}$	$\frac{3.94}{101}$
						$\begin{gathered} \operatorname{scnt} 07 \\ 1200 \end{gathered}$	$\frac{4.36}{66}$	$\frac{2.78}{65}$	$\frac{0.26}{51}$	$\frac{2.40}{59}$	$\frac{3.82}{40}$	$\frac{2.02}{57}$	$\frac{2.90}{62}$	$\frac{2.29}{62}$	$\frac{3.94}{58}$	$\frac{2.66}{66}$	$\frac{3.64}{66}$	$\frac{3.68}{58}$	$\frac{4.76}{61}$	$\frac{2.85}{57}$	$\frac{2.31}{66}$	$\frac{4.45}{54}$	$\frac{2.58}{66}$	$\frac{1.62}{35}$	$\frac{2.21}{29}$	$\frac{2.84}{62}$
							$\begin{gathered} \text { scnto9 } \\ 1233 \end{gathered}$	$\frac{4.34}{95}$	$\frac{2.91}{84}$	$\frac{3.77}{69}$	$\frac{3.52}{40}$	$\frac{3.61}{88}$	$\frac{4.34}{89}$	$\frac{4.40}{82}$	$\frac{4.46}{83}$	$\frac{3.78}{84}$	$\frac{2.76}{91}$	$\frac{4.83}{74}$	$\frac{4.70}{73}$	$\frac{4.03}{79}$	$\frac{3.48}{82}$	$\frac{8.78}{67}$	$\frac{4.51}{107}$	$\frac{3.70}{68}$	$\frac{4.56}{62}$	$\frac{4.59}{95}$
								$\underset{1230}{\substack{\text { scnt1 }}}$	$\frac{4.16}{81}$	$\frac{4.19}{58}$	$\frac{3.10}{40}$	$\frac{4.68}{87}$	$\frac{4.17}{89}$	$\frac{3.35}{82}$	$\frac{3.74}{83}$	$\frac{3.54}{83}$	$\frac{2.91}{89}$	$\frac{4.93}{74}$	$\frac{3.64}{73}$	$\frac{4.13}{79}$	$\frac{1.72}{75}$	$\frac{2.99}{67}$	$\frac{1.96}{95}$	$\frac{2.28}{65}$	$\frac{5.13}{59}$	$\frac{4.15}{92}$
									$\underset{1235}{ }$	$\frac{3.60}{44}$	$\frac{2.78}{33}$	$\frac{4.17}{82}$	$\frac{2.15}{78}$	$\frac{3.28}{71}$	$\frac{0.41}{76}$	$\frac{0.69}{69}$	$\frac{1.51}{75}$	$\frac{2.01}{67}$	$\frac{0.00}{63}$	$\frac{3.00}{73}$	$\frac{3.41}{61}$	$\frac{1.23}{64}$	$\frac{1.57}{86}$	$\frac{4.38}{70}$	$\frac{1.54}{64}$	$\frac{2.73}{86}$
										$\begin{gathered} \text { scnt14 } \\ 1193 \end{gathered}$	$\frac{1.93}{40}$	$\frac{2.53}{50}$	$\frac{3.31}{55}$	$\frac{3.09}{55}$	$\frac{2.53}{51}$	$\frac{1.67}{59}$	$\frac{0.77}{60}$	$\frac{3.38}{51}$	$\frac{1.48}{54}$	$\frac{3.11}{50}$	$\frac{4.80}{65}$	$\frac{2.36}{47}$	$\frac{0.49}{67}$	$\frac{5.68}{28}$	$\frac{2.20}{22}$	$\frac{3.23}{55}$
											$\begin{gathered} \text { sccut16 } \\ 1182 \end{gathered}$	$\frac{3.48}{39}$	$\frac{4.54}{40}$	$\frac{5.87}{40}$	$\frac{3.17}{40}$	$\frac{2.43}{40}$	$\frac{3.25}{40}$	$\frac{3.48}{40}$	$\frac{2.21}{40}$	$\frac{1.97}{39}$	$\frac{4.53}{40}$	$\frac{4.40}{36}$	$\frac{1.72}{40}$	$\frac{0.00}{0}$	$\frac{0.00}{0}$	$\frac{2.05}{40}$
												$\begin{gathered} \operatorname{scntI7} \\ 1231 \end{gathered}$	$\frac{0.26}{84}$	$\frac{3.86}{77}$	$\frac{3.59}{82}$	$\frac{2.27}{75}$	$\frac{4.58}{81}$	$\frac{4.29}{73}$	$\frac{2.58}{69}$	$\frac{5.89}{79}$	$\frac{2.84}{67}$	$\frac{2.94}{67}$	$\frac{4.82}{88}$	$\frac{3.27}{66}$	$\frac{3.42}{60}$	$\frac{4.68}{88}$
													$\begin{gathered} \operatorname{scnt} 18 \\ 1227 \end{gathered}$	$\frac{2.52}{82}$	$\frac{5.33}{83}$	$\frac{2.77}{80}$	$\frac{4.85}{86}$	$\frac{4.60}{74}$	$\frac{4.14}{73}$	$\frac{4.98}{79}$	$\frac{4.18}{72}$	$\frac{4.40}{67}$	$\frac{5.06}{89}$	$\frac{3.45}{62}$	$\frac{4.26}{56}$	$\frac{4.02}{89}$
														$\begin{gathered} \text { sentri } \\ 1220 \end{gathered}$	$\frac{3.34}{78}$	$\frac{3.26}{80}$	$\frac{3.63}{82}$	$\frac{3.76}{74}$	$\frac{1.64}{73}$	$\frac{1.59}{77}$	$\frac{3,37}{72}$	$\frac{5.16}{67}$	$\frac{2.37}{82}$	$\frac{3.38}{55}$	$\frac{2.78}{49}$	$\frac{2.05}{82}$
															$\begin{gathered} \text { scuti23 } \\ 1225 \end{gathered}$	$\frac{3.72}{76}$	$\frac{5.39}{82}$	$\frac{3.12}{74}$	$\frac{4.81}{70}$	$\frac{4.08}{79}$	$\frac{2.79}{68}$	$\frac{6.39}{67}$	$\frac{2.26}{83}$	$\frac{2.66}{60}$	$\frac{3.23}{54}$	$\frac{4.05}{83}$
																$\begin{gathered} \operatorname{sent26} \\ 1218 \end{gathered}$	$\frac{3.18}{84}$	$\frac{0.60}{74}$	$\frac{2.42}{73}$	$\frac{2.58}{75}$	$\frac{1.29}{76}$	$\frac{5.40}{67}$	$\frac{1.36}{84}$	$\frac{1.95}{53}$	$\frac{3.15}{47}$	$\frac{3.92}{80}$
																	$\begin{gathered} \operatorname{scnt30} \\ 1224 \end{gathered}$	$\frac{3.15}{74}$	$\frac{4.09}{73}$	$\frac{4,41}{79}$	$\frac{1.98}{77}$	$\frac{4.37}{67}$	$\frac{4.06}{91}$	$\frac{2.33}{59}$	$\frac{2.43}{53}$	$\frac{4.02}{86}$
																		$\begin{gathered} \operatorname{scn132} \\ 1216 \end{gathered}$	$\frac{3.59}{70}$	$\frac{4.13}{73}$	$\frac{3.64}{68}$	$\frac{2.60}{67}$	$\frac{2.81}{74}$	$\frac{2.80}{51}$	$\frac{3.84}{45}$	$\frac{2.96}{74}$
																			$\begin{gathered} \text { scnt34 } \\ 1212 \end{gathered}$	$\frac{4.69}{69}$	$\frac{0.79}{71}$	$\frac{4.32}{66}$	$\frac{2.68}{73}$	$\frac{3.28}{47}$	$\frac{4.48}{41}$	$\frac{2.65}{73}$
																				$\begin{gathered} s \mathrm{scn} 36 \\ 1222 \end{gathered}$	$\frac{3.70}{67}$	$\frac{3.75}{67}$	$\frac{3.75}{79}$	$\frac{3.38}{57}$	$\frac{3.98}{51}$	$\frac{4.20}{79}$
																					$\begin{gathered} \operatorname{scn} 37 \\ 1210 \end{gathered}$	$\frac{3.69}{64}$	$\frac{2.58}{82}$	$\frac{2.42}{45}$	$\frac{3.70}{39}$	$\frac{3.27}{72}$
																						$\begin{gathered} \operatorname{sent38} \\ 1213 \end{gathered}$	$\frac{3.74}{67}$	$\frac{3.19}{48}$	$\frac{3.05}{42}$	$\frac{5.50}{67}$
																							$\begin{gathered} \text { schntit } \\ 1248 \end{gathered}$	$\frac{1.99}{70}$	$\frac{3.01}{77}$	$\frac{4.21}{103}$
																								$\begin{gathered} \text { sent42 } \\ 1235 \end{gathered}$	$\frac{1.50}{64}$	$\frac{3.98}{70}$
																									$\begin{gathered} \text { scni436 } \\ 1251 \end{gathered}$	$\frac{3.46}{70}$

Table 21: Combining of individual samples to form same-tree means

Samples:	t-value:	overlap:	combinedmean:
scl10 + scl24	18.26	137	scl1024
scl11 + scl17	14.26	109	$\boldsymbol{s c l 1 1 7}$
scl14 + scl22	16.88	103	$\boldsymbol{s c l 1 4 2 2}$
scl59 + scl61	16.27	108	$\boldsymbol{s c l 5 9 6 1}$

Table 22: Matrix of t-values and overlaps for components of scl3245

Sample: Last ring date AD: scl32	1206	1424
	$\frac{14.02}{115}$	$\frac{2.24}{14}$
	scl34	$\frac{12.58}{67}$

Table 23: Matrix of t-values and overlaps for components of scl5248

Sample: Last ring date AD:	scl54	sel58
scl52	$\frac{17.71}{73}$	1212
	scl54	$\frac{13.15}{61}$

Table 24: Matrix of t-values and overlaps for components of scnto8

Sample:	scnt08b1	scnt08b2	scnt08c
Last ring date $A D$.	1614	1661	1660
scnt08a	10.60	11.38	12.90
	42	39	94
	scnt08b1	0.00	6.75
		0	42
		scnt08b2	9.91
			41

Table 25: Matrix of t-values and overlaps for components of scnt35x

Sample:	scnt35a2	scnt35b	scnt35cx
Last ring	1660	1657	1661
date AD:			
scnt35a1	0.00	7.25	0.00
	0	26	0
	$\operatorname{scnt} 35 \mathrm{a} 2$	2.69	0.92
		9	12
		scnt35b	2.26
			12

Table 26: Matrix of t-values and overlaps for components of SARUM5

Sample:	sarum5b	sarum5c	sarum5d	sarum5e	scl70	scl76	scl81	scl88	scnt35x	scnt40
Last ring date AD:	1661	1662	1660	1660	1636	1661	1653	1643	1661	1661
sarum5a	8.54	6.69	5.81	6.44	1.55	4.02	6.8	4.01	3.99	4.63
	84	87	73	79	66	27	68	60	75	68
	sarum5b	3.93	5.40	3.37	1.40	3.26	4.14	$\underline{2.42}$	3.00	4.37
		84	73	79	59	27	68	60	75	68
		sarum5c	5.07	4.52	3.09	$\underline{2.87}$	9.19	6.62	3.67	3.46
			73	79	62	27	68	60	75	68
			sarum5d	4.27	$\underline{2.73}$	0.44	5.42	4.99	$\underline{2.99}$	3.30
				73	49	26	66	56	73	67
				sarum5e	2.71	1.93	5.05	3.74	2.55	8.00
					55	26	68	60	74	67
					scl70	$\underline{0.00}$	4.90	3.36	$\underline{2.93}$	1.62
						0	51	53	50	43
						scl76	$\underline{2.88}$	0.00	1.90	$\frac{2.76}{27}$
							19	9	27	27
							scl81	$\underline{9.09}$	$\underline{4.09}$	3.04
								58	67	60
								scl88	3.65	3.06
									57	50
									scnt $35 x$	3.46
										68

Table 27: Matrix of t-values and overlaps for components of scl96100

Sample: relative last ring date:	scl97	48	scl98	scl99
scl96	$\frac{22.82}{29}$	$\frac{16.21}{29}$	$\frac{9.03}{28}$	$\frac{5.32}{24}$
	scl97	$\frac{20.01}{33}$	$\frac{10.21}{32}$	$\frac{6.88}{28}$
		$s c l 98$	$\frac{15.90}{35}$	$\frac{8.71}{31}$
			$s c l 99$	$\frac{10.15}{32}$

Table 28: Ring-width data for site master curve
SARUM1 AD 908-1221 Eastern Chapel roofs, Salisbury Cathedral- Irish imported material 35-timber mean.

314 rings, starting date AD 908

189	177	155	196	207	193	137	132	117	
111	165	140	180	149	154	146	92	68	85
128	110	114	94	126	94	128	90	103	109
113	81	115	105	106	82	104	126	129	
120	94	141	81	90	81	120	148	97	15
132	115	123	99	98	144	130	78	141	
127	102	88	99	112	81	61	90	83	
93	111	105	75	99	110	74	64	91	
66	73	79	98	85	111	92	100	108	
106	90	88	107	127	114	57	83	88	
113	127	127	97	68	107	98	139	91	
139	103	114	116	110	130	108	123	139	
131	99	134	129	101	122	125	118	112	
120	109	125	111	147	150	111	143	14	
145	144	104	146	117	107	63	125	132	
144	126	164	159	116	113	125	100	14	
99	115	106	109	129	141	127	142	13	
157	135	112	108	116	142	106	142	136	
112	119	102	102	68	92	78	110	98	
16	127	120	79	98	107	101	138	129	
137	130	108	106	107	91	90	144	148	
146	118	123	119	93	64	95	109	112	
133	91	135	84	56	70	84	126	77	
123	113	124	111	98	86	93	106	103	
100	109	108	101	104	109	90	94	120	108
95	93	85	74	85	98	101	89	94	
100	112	97	83	56	69	78	76	87	
101	119	84	76	91	87	85	106	91	
79	87	104	112	108	111	110	136	133	11
102	106	111	105	113	146	90	74	84	87
94	100	116	100	104	96	99	90	77	102
78	95								

number of samples in master														
1	1	1	1	1	1	1	1	1	1					
1	1	1	1	1	1	1	1	1	1					
1	2	2	2	2	2	2	2	2	2					
2	2	2	2	2	2	2	2	2	2					
2	2	2	2	2	2	2	2	2	2					
2	2	2	2	2	2	2	2	2	2					
2	2	2	2	2	2	2	2	2	2					
2	2	2	2	2	2	2	2	2	2					
2	2	2	2	2	2	2	3	3	3					
3	3	3	3	4	4	4	4	4	4					
4	5	5	6	6	6	6	6	6	7					
7	8	8	8	8	8	8	8	8	8					
8	8	9	8	8	8	9	9	9	9					
11	11	11	11	13	15	16	16	16	16					
16	16	17	17	19	21	21	21	21	22					
22	22	22	22	22	22	22	23	23	23					
23	23	24	24	25	25	26	27	27	27					
27	28	28	28	29	29	29	29	30	30					
30	30	30	30	30	31	31	31	31	31					
31	31	31	31	31	32	32	32	33	33					
33	33	34	34	34	34	34	34	34	34					
34	33	33	33	32	32	32	32	32	32					
32	32	32	32	32	32	32	32	32	32					
32	31	31	31	31	31	31	30	30	30					
30	30	30	30	30	29	29	29	29	28					
28	28	28	28	28	28	28	27	26	26					
26	25	25	25	25	25	25	25	25	24					
24	23	22	21	20	20	19	19	18	18					
18	17	15	14	14	14	12	12	9	9					
8	7	6	5	5	5	5	5	4	4					
4	3	3	3	3	3	3	3	3	3					
3	3	3	3											

Table 29: Ring-width data for site master curve
SARUM2 AD 1106-1213 Eastern Chapel roofs, Salisbury Cathedral-English material 5-timber mean.
108 rings, starting date AD 1106

ring widths $(0.01 \mathrm{~mm})$									
111	241	264	271	207	148	151	190	180	175
129	140	237	282	214	236	286	260	176	191
187	234	209	142	199	197	174	171	147	168
120	135	176	148	215	202	155	123	153	199
161	155	190	199	180	216	189	270	203	195
215	202	198	207	187	165	173	195	218	190
168	163	197	238	152	165	140	179	185	143
179	127	204	227	148	164	194	174	148	189
180	216	131	164	170	131	172	204	188	250
221	166	114	138	116	127	192	235	203	206
123	99	101	148	216	227	184	128		

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	2
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5
5	5	5	4	3	3	1	1	1	1
1	1	1	1	1	1	1	1		

Table 30: Ring-width data for site master curve
SARUM3x AD 1054-1254 North Nave Triforium and North Porch roofs, Salisbury CathedralEnglish material 27 -timber mean.

201 rings, starting date AD 1054

123	275	122	85	164	143	168	198	177	238
188	100	172	227	172	170	188	161	237	301
220	235	309	264	183	242	245	136	148	173
166	202	169	135	110	164	94	97	141	189
144	116	112	150	157	145	151	121	126	155
111	124	118	115	141	95	110	106	143	142
151	175	129	104	150	132	128	117	133	149
164	216	177	185	207	191	216	185	222	196
173	186	170	191	233	205	270	276	220	238
255	264	222	208	203	202	213	238	234	281
232	218	236	248	208	231	236	182	176	177
188	183	153	137	158	190	184	189	173	188
188	164	200	128	183	182	122	117	131	107
97	114	130	153	111	156	166	129	149	161
147	157	168	133	96	121	132	152	130	127
110	140	114	97	136	127	156	133	108	98
95	100	111	112	115	127	132	142	118	126
116	119	133	97	108	134	127	90	90	104
116	127	82	105	103	131	139	109	89	92
99	81	80	98	79	90	72	76	105	133
121									

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	3	3
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	5	5
5	5	5	5	5	5	5	5	5	5
5	6	6	7	7	8	8	8	9	9
10	12	13	13	13	16	17	18	18	21
23	23	23	24	24	24	25	25	25	25
25	25	25	25	25	25	25	25	25	25
25	25	26	26	26	26	26	25	26	26
26	26	26	26	26	26	26	26	26	25
25	25	25	25	25	25	25	25	25	25
24	24	24	24	24	24	24	23	23	23
23	23	23	23	23	23	23	22	22	21
20	20	20	19	19	18	18	17	17	16
15	14	13	12	11	11	11	10	9	9
8	8	6	6	6	4	4	4	3	3
3	3	3	3	3	2	2	2	1	1
1									

Table 31: Dating of SARUM3x (AD 1054-1254) against reference chronologies at AD 1254

Reference chronology	Spanning	Overlap	t-value
	SARUM4 (Baillie 1977a)	$878-1230$	177
	$595-1306$	201	5.98
DUBLIN1 ($882-1981$	201	6.02
EASTMID (Laxton and Litton 1988)	$881-1745$	201	6.11
SALOP95 (Miles 1995)	$1137-1332$	118	6.16
EXCATH1 (Mills 1988)	$1160-1301$	95	6.29
SARUMBP1 (Miles and Worthington 2000)	$1154-1287$	101	7.19
DOULTING (Miles and Worthington 2000)	$1106-1213$	108	7.88
SARUM2 (Miles and Worthington 2000)	$1041-1972$	201	8.75
HANTS97 (Miles 1997c)	$1155-1321$	100	8.98
MCHLMRSH (Miles and Worthington forthcoming)	$404-1981$	201	9.22
WALES97 (Miles 1997b)	$404-1981$	201	9.32
ENGLAND (Baillie and Pilcher 1982)	$1074-1326$	181	9.64
RIVRSDWN (Miles and Worthington 2001)	$944-1790$	201	10.07
SENG98 (Bridge 1998)	$406-1594$	201	10.24
SOUTH (Hillam and Groves 1994)	$413-1728$	201	11.47

Chronology names in bold are composite regional masters * Component of WALES97

Table 32: Matrix of t-values and overlaps for components of SARUM4

 $\begin{array}{llllllllllllll}5 c l 38 \\ 1180 & \frac{0.00}{0} & \frac{0.00}{0} & \frac{4.16}{80} & \frac{4.77}{90} & \frac{3.98}{64} & \frac{3.44}{60} & \frac{4.79}{50} & \frac{5.27}{79} & \frac{1.87}{41} & \frac{1.16}{20} & \frac{1.34}{16} & \frac{4.68}{88} & \operatorname{scci8} \\ 1180\end{array}$ $\begin{array}{lllllllllllll}\text { scl41 } & \frac{4.32}{81} & \frac{0.06}{48} & \frac{3.28}{47} & \frac{0.00}{0} & \frac{324}{47} & \frac{5.63}{66} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{3.16}{67} & \frac{0.00}{0} & \text { scl41 } \\ 1092\end{array}$ $\begin{array}{llllllllllll}\text { scl42 } & \frac{11.17}{1074} & \frac{1.73}{30} & \frac{0.00}{29} & \frac{320}{29} & \frac{4.43}{48} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{2.53}{49} & \frac{0.00}{0} & \text { scl42 } \\ 1074\end{array}$ $\begin{array}{lllllllllll}5 c l 43 & \frac{4.51}{115} & \frac{8.39}{54} & \frac{5.63}{105} & \frac{5.72}{96} & \frac{5.45}{90} & \frac{1.58}{31} & \frac{0.00}{} & \frac{2.18}{62} & \frac{4.14}{78} & \text { scl43 } \\ 1170\end{array}$ $\begin{array}{lllllllllll}\text { sclu6 } & \frac{3.63}{67} & \frac{7.23}{105} & \frac{5.79}{95} & \frac{4.34}{90} & \frac{1.97}{64} & \frac{1.59}{43} & \frac{5.28}{61} & \frac{3.08}{111} & \text { scl46 } \\ 1203\end{array}$ $\begin{array}{llllllllll}5 c l 47 \\ 1183 & \frac{3.01}{34} & \frac{3.76}{24} & \frac{3.01}{53} & \frac{2.54}{44} & \frac{2.03}{23} & 0.00 & \frac{3.81}{67} & \text { scl47 } \\ 1183\end{array}$ $\begin{array}{llllllll}5 c 148 & \frac{6.88}{95} & \frac{4.65}{71} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{6.93}{61} & \frac{2.68}{58} & s c 148 \\ 1150 & 1150\end{array}$ $\begin{array}{lllllll}\text { scl49 } & \frac{4.64}{61} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{5.05}{80} & \frac{3.95}{48} & \text { scl49 } \\ 1140\end{array}$ $\begin{array}{lllllll}\text { sclso } & \frac{1.15}{30} & \frac{0.00}{0} & \frac{1.17}{27} & \frac{5.41}{77} & \text { sclso } \\ 1169 & & 169\end{array}$ $\begin{array}{llllll}\text { sect5248 } & \frac{3.84}{52} & \frac{0.00}{0} & \frac{4.75}{67} & \text { scl2248 } \\ 1212 & 1212\end{array}$ $\begin{array}{lllll}\operatorname{scl153} \\ 1230 & \frac{0.00}{0} & \frac{3.19}{46} & \operatorname{scct53} \\ 1230\end{array}$ $\begin{array}{llll}\text { cll5s } & \frac{0.00}{0} & \begin{array}{lll}\text { scl35 } \\ 106 & 106\end{array}\end{array}$
sclly
1091

$\begin{array}{llllllllllllllllllllllllllllllllll}s c l 21 \\ 1219 & \frac{0.95}{32} & \frac{0.00}{0} & \frac{0.00}{21} & \frac{0.00}{0} & \frac{1.65}{39} & \frac{0.00}{0} & \frac{2.13}{36} & \frac{1.88}{57} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{2.09}{57} & \frac{0.13}{23} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.79}{46} & \frac{0.76}{26} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{1.96}{55} & \frac{3.10}{59} & \frac{0.00}{0} & \frac{1.02}{49} & 5 c l 21 \\ 1219\end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllllllll}\text { scl26 } & \frac{2.28}{31} & \frac{3.77}{109} & \frac{4.73}{98} & \frac{4.11}{109} & \frac{5.42}{109} & \frac{3.11}{81} & \frac{2.45}{78} & \frac{1.82}{28} & \frac{3.77}{88} & \frac{2.13}{23} & \frac{0.00}{0} & \frac{3.67}{101} & \frac{4.37}{109} & \frac{2.89}{62} & \frac{3.11}{81} & \frac{3.64}{71} & \frac{6.45}{90} & \frac{2.97}{39} & \frac{0.00}{0} & \frac{2.16}{37} & \frac{3.00}{86} & 5 c l 26 \\ 1178\end{array}$
 $\begin{array}{lllllllllllllllllllll}5 c l 28 \\ 1196 & \frac{6.14}{120} & \frac{3.72}{133} & \frac{4.13}{155} & \frac{3.51}{81} & \frac{3.63}{106} & \frac{4.71}{46} & \frac{6.15}{90} & \frac{6.12}{51} & \frac{2.83}{33} & \frac{4.43}{126} & \frac{4.06}{151} & \frac{4.73}{67} & \frac{5.77}{105} & \frac{6.74}{99} & \frac{4.76}{90} & \frac{1.97}{57} & \frac{2.87}{36} & \frac{3.93}{65} & \frac{5.20}{104} & \frac{5 c c l 28}{1196}\end{array}$

$\begin{array}{lllllllllllllllllll}5 c(311 & \frac{3.44}{133} & \frac{4.20}{81} & \frac{1.95}{87} & \frac{2.75}{43} & \frac{5.20}{90} & \frac{1.21}{32} & \frac{0.00}{0} & \frac{3.66}{110} & \frac{3.77}{133} & \frac{1.79}{67} & \frac{3.48}{90} & \frac{1.90}{80} & \frac{5.46}{90} & \frac{2.66}{54} & \frac{3.28}{33} & \frac{0.44}{46} & \frac{3.72}{101} & 5 c(111 \\ 1193\end{array}$
$\begin{array}{llllllllllllllllll}5 c(13245 \\ 1214 & \frac{4.87}{81} & \frac{2.13}{127} & \frac{1.92}{64} & \frac{3.68}{90} & \frac{3.16}{72} & \frac{5.62}{54} & \frac{2.84}{126} & \frac{2.89}{158} & \frac{3.02}{67} & \frac{4.13}{105} & \frac{3.76}{144} & \frac{7.30}{90} & \frac{1.86}{73} & \frac{2.34}{54} & \frac{1.36}{81} & \frac{4.21}{114} & 5 c 1324 \\ 1214\end{array}$
$\begin{array}{llllllllllllllllll}{ }^{5 c / 33} & \frac{3.52}{73} & \frac{0.00}{0} & \frac{4.38}{65} & \frac{1.94}{18} & \frac{0.00}{0} & \frac{5.81}{81} & \frac{3.76}{81} & \frac{3.19}{39} & \frac{5.26}{76} & \frac{3.24}{66} & \frac{4.62}{76} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{2.55}{32} & \frac{2.73}{63} & 5 c 133 \\ 1155\end{array}$
$\begin{array}{llllllllllllllll}5 c c l 36 \\ 1147 & \frac{0.00}{0} & \frac{3.18}{57} & \frac{1.84}{93} & \frac{4.16}{75} & \frac{5.58}{103} & \frac{4.35}{102} & \frac{5.24}{31} & \frac{6.03}{102} & \frac{6.83}{114} & \frac{3.18}{68} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{3.16}{81} & \frac{3.20}{55} & 5 c l 36 \\ 1147\end{array}$
$\begin{array}{lllllllllllllllllllllllll}s c c 37 & \frac{4.26}{30} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.94}{20} & \frac{3.56}{53} & \frac{3.85}{33} & \frac{0.00}{0} & \frac{0.00}{0} & \frac{0.00}{19} & \frac{4.23}{62} & \frac{2.67}{54} & \frac{0.00}{0} & \frac{4.17}{56} & \text { scl3 }\end{array}$

Table 33: Ring-width data for site master curve
SARUM4 AD 878-1230 North Nave Triforium roof, Salisbury Cathedral - Irish imported material: roof boards 41 -timber mean

353 rings, starting date AD 878

ring widthr $\mathbf{(0 . 0 1} \mathbf{m m})$									
60	44	52	55	38	47	55	18	31	44
40	28	61	54	83	72	97	77	94	149
158	149	140	135	104	106	108	114	112	125
136	113	115	109	141	122	156	112	89	129
111	85	70	86	118	119	96	85	50	82
107	111	118	103	122	106	115	84	96	109
79	65	107	90	71	59	77	77	93	78
102	90	89	62	81	92	112	112	66	103
96	102	89	104	92	136	98	84	102	84
114	82	95	111	106	62	66	86	85	116
85	105	128	89	110	135	88	81	117	117
97	105	118	135	103	112	83	88	119	126
114	115	119	126	131	101	69	101	92	105
104	106	108	84	72	92	86	103	82	107
122	89	93	92	89	100	82	97	107	104
107	85	119	105	82	91	125	128	103	113
105	92	110	92	122	88	73	104	102	118
99	94	84	119	94	85	54	91	95	77
93	80	104	118	84	79	94	77	91	94
82	100	105	86	82	99	96	131	118	94
125	116	100	87	88	108	74	109	86	94
104	86	76	76	85	127	96	103	86	117
96	94	78	60	63	72	62	97	101	84
88	90	74	81	67	56	67	115	107	118
129	85	100	106	96	76	74	81	84	105
109	72	111	95	68	63	63	96	81	84
103	93	121	107	101	87	90	113	110	93
101	121	95	107	99	109	97	86	113	109
88	84	80	78	77	90	102	86	91	95
97	106	95	90	95	81	83	79	97	70
112	151	111	96	115	99	74	97	87	97
73	83	86	94	93	93	91	104	98	82
87	87	93	89	96	104	67	81	82	80
80	91	134	119	109	108	102	99	92	96
90	94	87	99	84	105	87	99	116	92
107	122	130							

Table 34: Dating of the Irish chronologies SARUM1 and SARUM4 against English and Irish reference chronologies at AD 1221 and AD 1230 respectively

```
English chronologies
    Reference chronology
    LONDON (Tyers pers com)
    EASTMID (Laxton and Litton 1988)
    SALOP95 (Miles 1995)
    WALES97 (Miles 1997b)
    SOUTH (Hillam and Groves 1994)
    ENGLAND (Bailie and Pilcher 1982)
Irish chronologies
    Referencechronology
    LIGONIEL (Brown pers comm)
    SUMMERVI (Brown pers comm)
    TOOME (Baillie 1982)
    ATHLONE (Brown pers comm)
        CLONLONA (Brown pers comm)
        BELFAST (Baillie 1977c)
        KILMAINH (Brown pers comm)
    BLOOMHIL (Brown pers comm)
        CRO-INIS (Brown pers comm)
    TRIM_CAS (Condit 1996)
    CORKI (Brown forthcoming)
    DROGHEDA (Sweetman 1994)
    ABBEY (Brown pers comm)
        WATERFOR (Brown 1997)
        SARUM1 (Miles and Worthington 2000)
        SARUM4 (Miles and Worthington 2001)
    DUBLIN1 (Baillie 1977a)
    EARLYAD (Brown pers comm)
    NEWROSS (Brown pers comm)
Reference chronology
LIGONIEL (Brown pers comm)
SUMMERVI (Brown pers comm)
TOOME (Baillie 1982)
ATHLONE (Brown pers comm)
CLONLONA (Brown pers comm)
BELFAST (Bailie 1977c)
KILMAINH (Brown pers comm)
BLOOMHIL (Brown pers comm)
CRO-INIS (Brown pers comm)
TRIM CAS (Condit 1996)
CORK1(Brown forthcoming)
DROGHEDA (Sweetman 1994)
ABBEY (Brown pers comm)
WATERFOR (Brown 1997)
SARUM1 (Miles and Worthington 2000)
SARUM4 (Miles and Worthington 2001)
DUBLIN1 (Baillie 1977a)
EARLYAD (Brown pers comm)
NEWROSS (Brown pers comm)
```

Spanning
413-1728
882-1981

SARUM1 at 1221
Overlap t-value $314 \quad 6.75$ $314 \quad 7.08$
$314 \quad 6.71$
6.71
SARUM4 at 1230
Overlap \boldsymbol{t}-value
$353 \quad 7.50$
3497.11
881-1745
404-1981
406-1594
404-1981

Spanning
919-1072
851-1001
936-1598
872-1138
984-1117
1001-1970
949-1273
1059-1194
938-1075
974-1203
957-1249
921-1194
936-1240
839-1216
908-1221
878-1230
$314 \quad 17.99$
400-1600
907-1278

SARUM4 at 1230
Overlap \boldsymbol{t}-value
$353 \quad 7.50$
$349 \quad 7.11$
$350 \quad 9.05$
35310.80
35311.32
$353 \quad 12.94$

SARUM1 at 1221 SARUM4 at 1230
Overlap t-value Overlap t-value
$154-4.00$
15
3.63
$124 \quad 3.87$
$295 \quad 5.34$
261
5.39
2313.20

134
5.84

134
5.80

230
6.49
$273 \quad 4.80$
282
6.58
$136 \quad 6.36$
$138 \quad 8.72$
$230 \quad 9.15$
$274 \quad 12.28$
$274 \quad 12.23$
$295 \quad 14.32$
$339 \quad 15.29$
314
17.99

878-1230 $314 \quad 17.99$
$\begin{array}{lllll}895-1306 & 314 & 18.02 & 353 & 14.92\end{array}$
$\begin{array}{lllll}400-1600 & 314 & 17.54 & 353 & 16.92\end{array}$
$\begin{array}{llllll}907-1278 & 314 & 17.24 & 324 & 19.18\end{array}$

Chronology names in bold are composite regional masters

Table 35: Grouping of thirteenth-century timbers from Eastern Chapels (scec) and North Triforium (scnt and scl) using the Litton-Zainodin Grouping Procedure (after Litton pers comm)

Table 36: Combining of multiple radii from individual sample scl79 to form same-timber mean

Samples:	t-value:	overlap:	combinedmean:
scl79a+scl79b	14.49	55	scl79

Table 37: Combining of individual samples to form same-tree means

Samples:	t-value:	overlap:	combinedmean:
scl80 + scl83	6.25	35	scl8083
scI89 + scl92	10.33	40	scl8992

Table 38: Matrix of t-values and overlaps for components of sarum5a

Sample:	scnt20 1661	scnt21 1661	scnt22	$\text { scnt } 27$	scl66	scl69	scl74	
Last ring	1661	1661	1661	1661	1656	1661	1633	1661
scnt08	14.47	12.16	16.36	13.20	14.60	$\underline{9.83}$	12.90	7.12
	86	88	95	72	70	52	66	55
	scnt20	7.17	10.90	8.72	11.61	10.68	9.94	9.57
		86	86	72	70	52	58	55
		scnt21	$\underline{9.04}$	$\underline{12.79}$	7.52	5.76	6.59	3.74
			88	72	70	52	60	55
			scnt22	10.99	11.04	8.46	8.84	6.84
				72	70	52	66	55
				scnt27	9.21	6.63	6.43	4.77
					67	52	44	55
					scl66	16.32	19.72	10.47
						47	47	50
						scl69	10.77	11.05
							24	52
							scl74	7.86
								27

Table 39: Matrix of t-values and overlaps for components of sarum5b

Sample: Last ring date $A D:$	scl64	scl79
scl63	$\frac{\mathbf{7 . 7 3}}{\mathbf{3 0}}$	$\frac{\mathbf{9 . 4 7}}{\mathbf{5 1}}$
	scl64	$\frac{\mathbf{1 1 . 1 1}}{\mathbf{3 5}}$

Table 40: Matrix of t-values and overlaps for components of sarum5c

Sample: Last ring date AD:	scl71	scl73	scl77
scl65	$\frac{\mathbf{1 0 . 7 5}}{\mathbf{6 2}}$	$\frac{\mathbf{1 1 . 5 6}}{\mathbf{5 8}}$	$\frac{\mathbf{6 . 5 5}}{\mathbf{2 1}}$
	scl71	$\frac{\mathbf{1 0 . 3 3}}{\mathbf{5 6}}$	$\frac{\mathbf{8 . 2 5}}{\mathbf{3 5}}$
		$\mathbf{s c l 7 3}$	$\underline{\mathbf{2 . 8 1}}$

Table 41: Matrix of t-values and overlaps for components of sarum5d

Sample: Last ring date AD:	scl75	1648	scl78	scl82	scl86
scl67	$\frac{13.22}{44}$	$\frac{15.36}{45}$	$\frac{14.02}{45}$	$\frac{17.18}{41}$	$\frac{8.43}{50}$
	scl75	$\frac{9.22}{37}$	$\frac{14.68}{38}$	$\frac{13.15}{44}$	$\frac{8.33}{46}$
		scl78	$\frac{10.48}{44}$	$\frac{14.20}{34}$	$\frac{7.08}{43}$
			scl82	$\frac{14.04}{35}$	$\frac{7.60}{44}$
				$s c l 86$	$\frac{11.15}{43}$

Table 42: Matrix of t-values and overlaps for components of sarum5e

Sample:	scnt39
Last ring date $A D:$ 1660	
scnt33	$\underline{\mathbf{1 1 . 6 5}}$

Table 43: Ring-width data for site master curve
SARUM5 AD 1558-1662 Structural timbers and roof boards - North Nave Triforium roof, Salisbury Cathedral

ring widths (0.01 mm)										number of samples in master									
320	276	364	302	361	362	420	290	198	181	1	1	1	1	1	1	1	1	1	1
207	296	303	297	297	265	268	224	204	227	1	1	1	2	2	2	2	3	3	3
212	181	235	199	197	202	227	262	215	232	4	4	4	4	5	5	6	6	7	8
240	282	188	222	280	337	311	226	184	158	9	9	9	9	9	9	10	10	10	10
159	109	139	175	182	204	212	177	261	212	10	10	10	10	10	10	10	10	10	10
204	171	174	165	144	200	170	201	205	248	10	10	10	10	10	10	10	10	10	10
235	181	173	163	161	162	145	165	174	138	10	10	10	10	10	10	10	10	10	10
156	185	137	109	163	142	105	128	156	155	10	10	10	10	10	10	10	11	11	10
166	136	154	141	126	111	104	109	124	103	10	10	10	10	10	10	9	9	9	9
182	120	123	95	109	101	110	104	109	133	9	9	9	9	9	9	8	8	8	8
120	93	106	124	94						8	8	8	6	1					

Table 44: Dating of SARUM5 (AD 1558-1662) against reference chronologies at AD 1662

Referencechronology
 EASTMID (Laxton and Litton 1988)
 WALES97 (Miles 1997b)
 LONDON (Tyers pers com)
 OXON93 (Haddon-Reece et al 1993)
 MC16 (Fletcher 1978)
 THEVYNE3 (Miles and Worthington 1997)
 MARLBORO (Miles and Haddon-Reece 1995)
 YATTON 2 (Tyers and Wilson 1999)
 SHPTNMLT (Miles 2002)
 WILBURY2 (Miles and Worthington 1999)
 SARUMBP7 (Miles and Worthington 2000)

Spanning	Overlap	t-value
882-1981	105	4.86
404-1981	105	5.90
413-1728	105	6.16
632-1987	105	6.23
1314-1636	79	6.44
1543-1653	96	6.93
1576-1655	80	7.37
1564-1691	99	7.64
1518-1677	105	7.72
1581-1657	77	8.15
1562-1661	100	11.19

Chronology names in bold are composite regional masters

Table 45: Matrix of t-values and overlaps for components of SARUM6

Sample: Last ring date AD:	scl95
	1668
scl94	$\frac{\mathbf{1 1 . 3 1}}{\mathbf{5 1}}$

Table 46: Ring-width data for site master curve
SARUM6 AD 1604-68 Roof boards - North Porch roof, Salisbury Cathedral
65 rings, starting date AD 1604
ring widths $(0.01 \mathrm{~mm})$

256	179	229	174	172	159	211	172	120	230
150	138	152	197	168	132	162	299	222	217
205	361	338	265	276	247	210	154	222	223
127	157	127	134	264	219	227	168	224	205
145	149	161	130	201	158	161	148	113	108
113	127	127	122	153	100	113	129	123	156
115	103	114	114	211					

number of samples in master

1	1	1	1	1	1	1	1	1	1
1	1	1	1	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2					

Table 47: Dating of SARUM6 (AD 1604-68) against reference chronologies at AD 1668

	Reference chronology
	BRADNM1 (Miles and Worthington 1998)
	grtn11 (Miles and Worthington forthcoming)
*§	SARUMBP7 (Miles and Worthington 2000)
$*$	NEWING (Haddon-Reece et al 1987)
SARUM5	
	DEVIZESB (Haddon-Reece et al 1990)
	SHPTNMLT (Miles 2002)
	HILLHAL2 (Bridge 1999)
	YATTON2 (Tyers and Wilson 1999)
	THEVYNE3 (Miles and Worthington 1997)
MASTERAL (Haddon-Reece and Miles 1993)	
OXON93 (Haddon-Reece et al 1993)	

Spanning	Overlap	t-value
1553-1652	49	4.15
1587-1685	65	4.48
1562-1661	58	4.79
1540-1678	65	5.21
1558-1662	59	5.25
1447-1647	44	5.40
1518-1677	65	5.57
1525-1681	65	5.66
1564-1691	65	5.71
1543-1653	50	5.96
404-1987	65	6.31
632-1987	65	6.41

Chronology names in bold are composite regional masters

* Component of MASTERAL
§ Component of OXON93

Table 48: Matrix of t-values and overlaps for components of SARUM7

Sample:	scl72	scl8992	sc190	scl91	scl93
Last ring date $A D$.	1731	1735	1735	1735	1735
sci68	8.32	3.54	3.61	5.12	4.22
	33	37	37	37	37
	scl72	5.03	3.35	5.85	5.44
		55	42	47	40
		scl8992	5.94	3.94	3.89
			46	51	44
			sc190	4.18	4.24
				46	44
				scl91	8.23
					44

Table 49: Ring-width data for site master curve
SARUM7 AD 1672-1735 Roof boards - North Nave Triforium and North Porch roofs, Salisbury Cathedral

	ngs, width	$\begin{aligned} & \text { tartin } \\ & \mathrm{s}(0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{g} \text { date } \\ & \text { (mm) } \end{aligned}$							number of samples in master									
139	208	184	247	291	338	223	207	254	200	1	1	1	1	1	2	2	2	2	2
173	126	103	99	158	190	154	163	194	215	2	2	2	3	3	3	3	3	4	4
164	152	145	118	128	162	168	151	186	152	5	5	5	5	5	5	5	6	6	6
93	105	135	93	111	133	107	144	101	109	6	6	6	6	6	6	6	6	6	6
167	187	122	124	127	131	101	105	155	204	6	6	6	6	6	6	6	6	6	6
196	162	245	165	186	219	167	169	197	192	6	6	6	6	6	6	6	6	6	6
220	213	212	193							5	5	5	5						

Table 50: Dating of SARUM7 (AD 1672-1735) against reference chronologies at AD 1735

Reference chronology	Spanning	Overlap	t-value
EASTMID (Laxton and Liton 1988)	882-1981	64	4.22
SENG98 (Bridge 1998)	944-1790	64	4.90
OXON93 (Haddon-Reece et al 1993)	632-1987	64	5.28
MC19 (Fletcher 1978)	1399-1800	64	5.41
THEHOVEL (Miles and Worthington 1999)	1671-1811	64	5.49
*§ BARN (Haddon-Reece et al l987)	1658-1739	64	5.51
HANTS97 (Miles 1997c)	1041-1972	64	5.63
MASTERAL (Haddon-Reece and Miles 1993)	404-1987	64	5.64
MDM17b (Miles and Haddon-Reece 1995)	1664-1776	64	5.82
SARUMBP8 (Miles and Worthington 2000)	1616-1735	64	6.31
STEPCOTT (Miles and Worthington 1998)	1688-1809	48	6.44
BAREFOOT (Barefoot 1975)	1635-1972	64	6.54
HWC01 (Bridge 2000b)	1734-1783	52	7.59
MDM15c (Miles and Worthington 2000)	1658-1739	64	8.59
Chronology names in bold are composite regional masters			
* Component of MASTERAL			
§ Component of OXON93			
\ddagger Component of HANTS97			

APPENDIX 1: Drawings showing location of samples (after Jones)

Eastern Chapels:
St Peter's (Northern Chapel)

page 95	Plan at wallplate level	$\begin{aligned} & \text { Samples scec } 3,4,6,7,8,15,17,18,19,20,22,23, \\ & 26,69,72,73 \end{aligned}$
page 96	Section A-A looking north	Samples scec 1, 3, 4, 6, 7, 8, 14, 15, 16, 17, 18, 22, 26
page 97	Section B-B looking south	Samples scec2, 3, 5, 13, 14, 16, 18, 19, 23, 24, 25, 69 70, 71, 73
page 98	Section D-D looking west	Samples scec3, 13,14,15
St Stephen's (Southern Chapel)		
page 99	Plan at wallplate level	Samples scec12, 29, 41, 42, 43, 44, 45, 46, 48, 50, 54, $55,56,57,58,59,60,61,62,63,64,65,66,67,68$
page 100	Section K-K looking north	$\begin{aligned} & \text { Samples scec 12, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, } \\ & 51,56 \end{aligned}$
page 101	Section L-L looking south	$\begin{aligned} & \text { Samples scec29, 49, 52, 53, 54, 55, 57, 58, 59, 60, 61, } \\ & 62,63,64,65,66,67,68 \end{aligned}$
page 102	Section N-N looking west	Sample scec68

North Nave Triforium Roof

page 103	Nave NW Triforium Plan	Samples scnt01, scnt06
page 104	Truss No 1 (diagonal) east face	Sample scnt01
page 105	Truss No 2E east face	Samples scnt02, 03
page 106	Truss No 3 west face	Samples scnt04, 05
page 107	Truss No 5 west face	Samples scnt06, 07
page 108	Truss No 6W west face	Samples scnt08b, 08c
page 109	Truss No 6E east face	Sample scnt08a
page 110	Truss No 7 west face	Samples scnt09
page 111	Truss No 8W west face	Sample $\boldsymbol{s c n t 1 0}$
page 112	Nave Triforium (centre) Plan	Samples scnt11, 12
page 113	Truss No 9 west face	Sample scnt11
page 114	Nave NE Triforium Plan	Samples scnt19, 21, 22, 26, 27, 33, 38, 39, 40

page 115	Truss No 10W west face	Samples scnil3, 14, 15
page 116	Truss No 11 west face	Samples scnt16,17
page 117	Truss No 12E west face	Sample scrit20
page 118	Truss No 13 west face	Sample scnt18
page 119	Truss No 14E east face	Sample scnt23
page 120	Truss No 15 west face	Samples scnt23, 25, 28
page 121	Truss No 16W west face	Sample scnt24
page 122	Truss No 16E east face	Sample scnt29
page 123	Truss No 18W west face	Samples scnt30,31,32
page 124	Truss No 18E east face	Sample scnt37
page 125	Truss No 19 west face	Samples scnt34, 35, 36,37
North Porch Roof		
page 126	Section looking west	Samples scnt41, 42, 43, 45, 46, 49
page 127	Section looking east	Samples scnt44, 47, 48, 50, 51
page 128	Section truss V south face	Samples scnt43, 50
page 129	Section truss VI south face	Samples scnt44, 45, 46
page 130	Section truss VII south face	Samples scht47, 48
Roof Plans showing under-lead sarking boards		
page 131	Nave NW triforium roof boards	scl41, 42, 43, 44, 88
page 132	North Porch roof boards West	scl45, 46, 47, 48, 49, 50, 89, 90, 91, 92, 93, 94, 95
page 133	North Porch roof boards East	scl96, 97, 98, 99, 100, 101

Plan at wallplate level (Jones 1998 \& 2002)

$=$ thirteenth century primary phase
(all samples prefixed SCEC)

0	1	2	3	4
$\boxed{1}$	1	1		

Eastern Chapels:

St Peter's (Northern Chapel) Roof

Section D-D looking west (Jones 1998 \& 2002)

Eastern Chapels:
St Stephen's (Southern Chapel) Roof
Plan at wallplate level (Jones 1998 \& 2002)

$=$ thirteenth century primary phase (all samples prefixed SCEC)

Eastern Chapels:
St Stephen's (Southern Chapel) Roof

0	1	2	3	4
-	1	1		1

Section N-N looking west (Jones 1998 \& 200

$=$ thirteenth century primary phase (all samples prefixed SCNT)

(all samples prefixed SCNT)

0

Nave NW Triforium

Truss No 2E east face (Jones 1998 \& 2002)

$=$ thirteenth century primary phase (all samples prefixed SCNT)

2 \square
3

Nave NW Triforium
Truss No 5 west face (Jones 1998 \& 2002) revised September 2002

$=$ thirteenth century primary phase (all samples prefixed SCNT)

Nave NW Triforium
Truss No 7 west face (Jones 1998 \& 2002)

$=$ thirteenth century primary phase (all samples prefixed SCNT)

1
2
3 \qquad 4 metres

Nave NE Triforium
Truss No 9 west face (Jones 1998 \& 2002)

$=$ thirteenth century primary phose (all samples prefixed SCNT)

1
2

Nave NE Triforium

Truss No 11 west face (Jones 1998 \& 2002)

S
$=$ thirteenth century primary phase (all samples prefixed SCNT)

Nave NE Triforium
Truss No 13 west face (Jones 1998 \& 2002)

Truss No 14E east face (Jones 1998 \& 2002)

S
$=$ thirteenth century primary phase (all samples prefixed SCNT)
$=$ replacement timber of 1661/3 (all samples prefixed SCNT)

Nave NE Triforium

Truss No 19 west face (Jones 1998 \& 2002)

North Porch Roof
Truss V south face (Jones 1998 \& 2002)
= thirteenth century primary phase
(all samples prefixed SCNT)

North Porch Roof

Truss VI north face (Jones 1998 \& 2002)

Nave NW Triforium

Roof Boards (Jones 2000 \& 2002) revised September 2002

trusses

XXI XX XVIIII XVIII XVII XVI XV XIIII XIII XII XI \quad X VIIII VIII VII VI \quad V IIII III II 1

$\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \text { metre }\end{array}$
\qquad

North Porch
 Roof Boards west elevation

trusses
10N | II III IIII V VI VII VIII VIIII X XI XII XIII XIIII XV XVI XVII XVIII XVIIII XX XXI

North Porch
 Roof Boards east elevation

[^0]: Many CfA reports are interim reports which make available the results of specialist investigations in advance of fill publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

[^1]: Key: ${ }^{*} \dagger, \ddagger, \S, \uparrow, \Psi, \bullet:=$ sample included in site master; $c=$ core; $s=$ section; $p=$ photograph; $=$ pith included in sample; $=$ within 5 rings of centre; $=$ pith within 10 rings of centre

[^2]: Master Chronologies:
 DUBLIN $\quad 855-1306$ (Bailie $19-0$)

 SALOP95 881-1745 (MAles 1999)

 SCOTLAND ${ }_{946-1975}^{882-198(\text { (Ballic } 19776)}$

