

7 Market Street Chipping Norton Oxfordshire

Tree-ring Analysis of Oak Timbers

Martin Bridge and Cathy Tyers

7 MARKET STREET CHIPPING NORTON OXFORDSHIRE

Tree-ring Analysis of Oak Timbers

Martin Bridge and Cathy Tyers

NGR: SP 31333 27212

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

SUMMARY

Ten samples were taken from timbers in the attic rooms, and two samples were taken from the first-floor ceiling beams. Three timbers contained fewer than 30 rings and were not analysed. The remaining timbers showed abrupt growth changes, but at least two pairs appear likely to have each been derived from the same parent tree. The erratic growth patterns are potentially the result of management of the trees. None of the samples dated.

CONTRIBUTORS

Martin Bridge and Cathy Tyers

ACKNOWLEDGEMENTS

We are grateful to the owners for allowing this work to be carried out. The site was one of several examined as part of the Historic Fabric in Historic Towns: Chipping Norton project, and we thank Rebecca Lane for managing the project on behalf of Historic England. We are indebted to members of the Oxfordshire Buildings Record and Chipping Norton Buildings Record, especially Victoria Hubbard for her extensive input on coordinating the project, and her friendly encouragement, and Jan Cliffe for permission to reproduce her drawings in Figures 2 and 3. We'd also like to thank Shahina Farid for commissioning the work, and her input into preparing this report.

ARCHIVE LOCATION

Oxfordshire Historic Environment Record County Archaeology Planning Regulations Communities County Hall New Road Oxford OX1 1ND

DATE OF INVESTIGATION 2015

CONTACT DETAILS
Martin Bridge
UCL Institute of Archaeology
31-34 Gordon Square
London EC1H 0PY
martin.bridge@ucl.ac.uk

Cathy Tyers
Historic England
4th Floor
Cannon Bridge House
25 Dowgate Hill
London EC4R 2YA
cathy.tyers@historicengland.org.uk

CONTENTS

Introduction	1
Early Fabric in Chipping Norton Project	1
7 Market Street	1
Methodology	2
Ascribing felling dates and date ranges	
Results and Discussion	3
References	4
Tables	5
Figures	6
Appendix	
• •	

INTRODUCTION

The Early Fabric in Historic Towns: Voluntary Group Projects, funded by Historic England, have been developed in the recognition and acknowledgement of the excellent work being undertaken by local vernacular groups in the study of local architectural trends and fabrics. The intention of these projects is to encourage this type of study through the provision of support and facilitate training of more people in building analysis and recording. The local projects were coordinated by Rebecca Lane (Historic England South West Region: Architectural Investigation).

Early Fabric in Chipping Norton Project

Whilst Chipping Norton features in a study on historic towns in Oxfordshire (Rodwell 1975), and some buildings have been recorded and published in detail (eg Simons and Phimester 2005), no systematic research had been undertaken on the buildings of the town before this project.

The project examined vernacular historic buildings in the centre of Chipping Norton, aiming to improve understanding of the morphology and development of the historic town plan and to understand this within the framework of economic and social change. It aimed to identify early plan forms and to understand the dates of the introduction of vernacular architectural details (eg in materials, carpentry, fenestration, and decorative features), thus mapping the survival of early (pre-1900) fabric and revealing the architectural evolution of the town's buildings.

Initially, 21 properties were identified that were thought to be key to understanding the town's architectural development for a programme of comprehensive investigation. These properties were assessed for their suitability for dendrochronology and 12 that contained oak timber considered suitable for analysis were initially sampled and analysed. Oak timbers from seven of these buildings could be dated by ring-width dendrochronology, whilst radiocarbon wiggle-matching was undertaken for one of the buildings where the ring-width dendrochronology had produced an undated site master chronology.

The results of the project are presented by Rosen and Cliffe (2017). The reports produced on the historic buildings recorded as part of this project by the Chipping Norton Buildings Record/Oxfordshire Buildings Record (OBR) will be deposited in the Oxfordshire Historic Environment Record.

7 Market Street

The property sits on the western side of the old market square (Fig 1) in the centre of Chipping Norton. It is a Grade II listed building (List Entry Number 1052627). As an important early building in the town (listed as seventeenth-century), it was a natural candidate for dendrochronological investigation as part of the *Early Fabric in Historic Towns: Chipping Norton* project. It was hoped that any results obtained might provide additional evidence on the development of the building itself, and the formation of the old market square, this being one of several buildings around the square investigated by the OBR.

The property is aligned north to south and has two storeys, and attic rooms, with brick stacks at either end. The roof has three bays, with butt purlins and through tenons. The northern truss has a cambered, lapped collar. Oak roof timbers were accessible in the attic rooms, and it is these that were investigated, along with two ceiling beams at first-floor level.

METHODOLOGY

Fieldwork for the present study was carried out in October 2015, following an initial assessment of the potential for dating a few weeks beforehand, and consultation with those involved in the project. In the initial assessment, accessible oak timbers with more than 50 rings and where possible traces of sapwood were sought, although slightly shorter sequences are sometimes sampled if little other material is available. Those timbers judged to be potentially useful were cored using a 16mm auger attached to an electric drill. The cores were labelled, and stored for subsequent analysis.

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their treering sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004). Cross-matching was attempted by a process of qualified statistical comparison by computer, supported by visual checks. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-value in the range of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward.

Depending on the completeness of the final ring (ie if it has only the spring vessels or early wood formed, or the latewood or summer growth) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem* (*tpq*) or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 9–41 rings (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

RESULTS AND DISCUSSION

Samples were taken from ten timbers in the attic rooms, including principal rafters, purlins, a collar, and a knee attaching a purlin to the north end truss, thought to be part of the building to the north. The two ceiling beams on the first floor were also sampled. Details of the samples are given in Table 1, with the ring-width measurements for each sample being given in the Appendix. The location of the timbers sampled are shown in Figures 2 and 3.

Three samples had less than 30 rings, and so were not measured or analysed further. Cross-matching was found between two pairs of samples: cn7mkt07 matched cn7mkt08 (t=8.3 with 75 years overlap; Fig 4) and cn7mkt04 matched cn7mkt09 (t=6.6 with 52 years overlap; Fig 5). The ring-width series were combined from each of these pairs to produce two new mean series (cn7mkt78 and cn7mkt49) of 115-years and 64-years respectively for further analysis, but neither these, nor any of the remaining series, could be dated against the extensive oak reference material.

It would appear that each of these pairs of samples potentially represent two timbers derived from the same parent tree. Potential cross-matching between the two pairs is poor (t = 3.7 with 64 years overlap) and hence inconclusive. However, given the distortions in the rings, it is possible but unproven that all four timbers are coeval and potentially from two trees growing in relatively close proximity that had been managed in the same way. The abrupt growth changes evident in Figures 4 and 5 could potentially represent human interference in the growth of the trees through woodland management practices. Given these abrupt growth changes found, it is not surprising that none of the ring-width series were securely dated.

The 'knee' (cn7mkt10), attached to the west purlin in the north attic room, is thought to be a later addition (Fig 6) and showed a more typical growth pattern (Fig 7). It also failed to date but individual 60-year series are relatively rarely securely dated.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Rodwell, K, 1975 *Historic towns in Oxfordshire: a survey of the New County*, Oxford (Oxford Archaeologial Unit)

Rosen, A, and Cliffe, J, 2017 *The making of Chipping Norton: a guide to its buildings and history to 1750*, Cheltenham (The History Press)

Simons, E, and Phimester, J, 2005 A late medieval inn at the White Hart Hotel, Chipping Norton, Oxfordshire, *Oxoniensia*, **70**, 309–24

Tyers, I, 2004 Dendro for Windows Program Guide 3rd edn, ARCUS Report, 500b

TABLES

Table 1: Details of the samples taken from 7 Market Street, Chipping Norton

Sample number	Timber and location	Total	Mean ring width	Sapwood	Mean	Relative date
		number of	(mm)	rings	sensitivity	span
		rings				
Roof timbers in attic r	rooms					
cn7mkt01	East principal rafter, south truss	61	1.81	-	0.20	-
cn7mkt02	South-east purlin, south room	87	1.25	27	0.29	-
cn7mkt03	Collar, south truss	<30	NM	h/s	-	-
cn7mkt04	South-west purlin, south room	52	1.43	1	0.25	13-6449
cn7mkt05	West principal rafter, south truss	<30	NM	h/s	-	-
cn7mkt06	North-west purlin, south room	<30	NM	-	-	-
cn7mkt07	West principal rafter, north truss	75+	1.15	15+3NM	0.23	38-11278
cn7mkt08	East principal rafter, north truss	115	1.16	23C	0.21	1-115 ⁷⁸
cn7mkt09	West purlin, north room	64	1.37	4	0.26	1-6449
cn7mkt10	'Knee' added to west purlin, north room	60	1.85	17C	0.25	-
First floor ceiling bear	ms					<u>.</u>
cn7mkt11	South ceiling beam	60	2.78	24C	0.19	-
cn7mkt12	North ceiling beam	33	3.18	11	0.27	-

Key: NM=not measured, h/s=heartwood/sapwood boundary, C=complete sapwood, winter felled; ⁴⁹=relative date span within mean series cn7mkt49; ⁷⁸=relative date span within mean series cn7mkt78

FIGURES

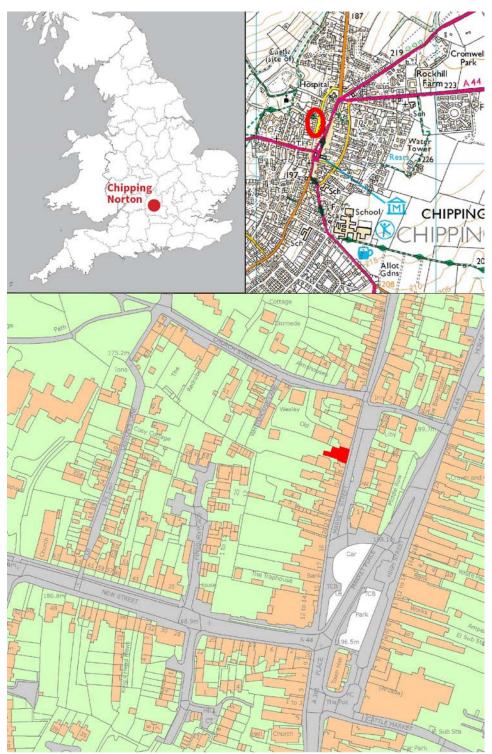


Figure 1: Maps to show the location of 7 Market Street in Chipping Norton, marked in red. Scale: top right 1:15000; bottom 1:2000. © Crown Copyright and database right 2020. All rights reserved. Ordnance Survey Licence number 100024900. © British Crown and SeaZone Solutions Ltd 2020. All rights reserved. Licence number 102006.006. © Historic England

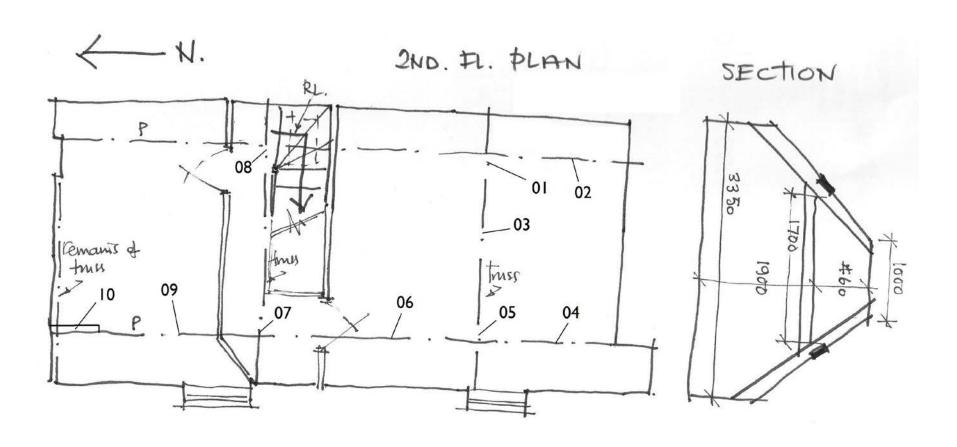


Figure 2: Sketch plan of the second floor, showing the positions of timbers sampled for dendrochronology (adapted from an original by Jan Cliffe, Chipping Norton Buildings Record working with the Oxfordshire Buildings Record)

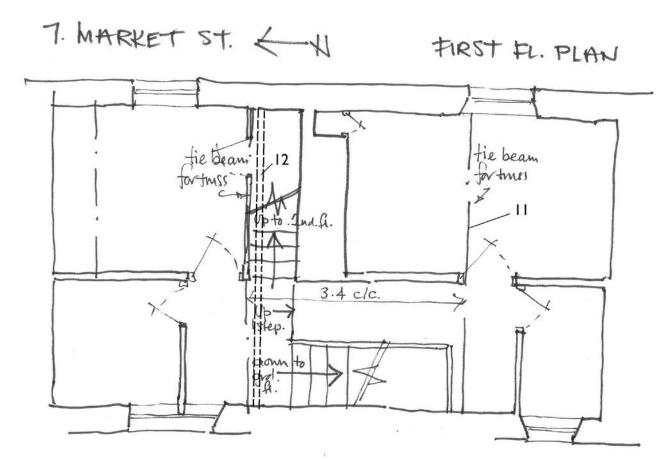


Figure 3: Sketch plan of the first floor, showing the positions of timbers sampled for dendrochronology (adapted from an original by Jan Cliffe, Chipping Norton Buildings Record working with the Oxfordshire Buildings Record)

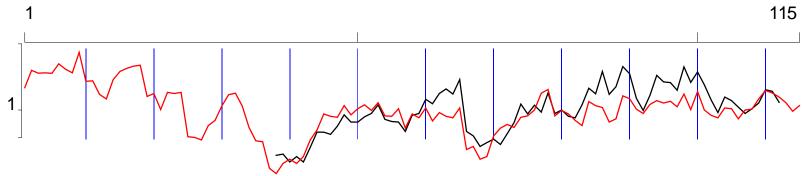


Figure 4: Plots showing the relative positions of overlap for samples cn7mkt07 (black) and cn7mkt08 (red), showing their similarity in growth. The y-axis is ring width (mm) on a logarithmic scale

9

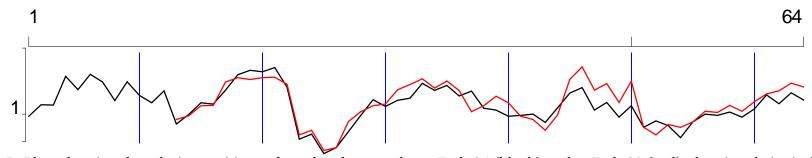


Figure 5: Plots showing the relative positions of overlap for samples cn7mkt04 (black) and cn7mkt09 (red), showing their similarity in growth. The y-axis is ring width (mm) on a logarithmic scale

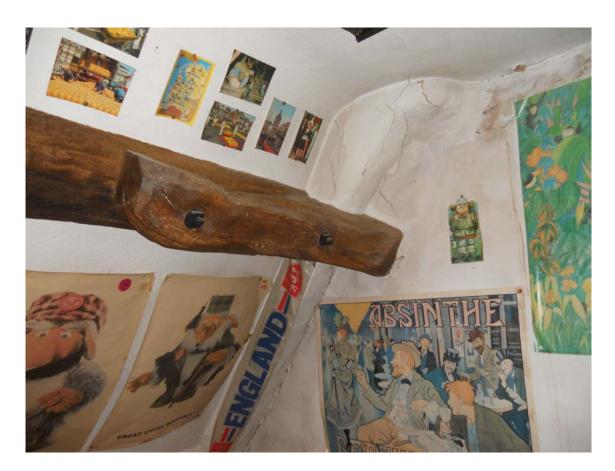


Figure 6: The attached 'knee' added to the west purlin in the north attic room (photograph Martin Bridge)

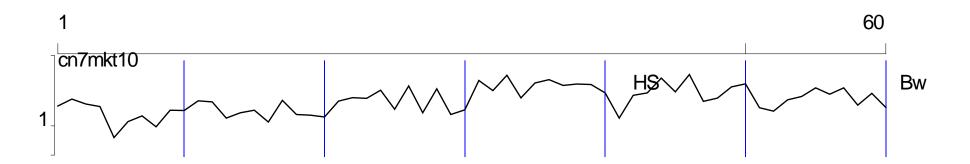


Figure 7: Plot showing the growth characteristics of sample cn7mkt10. The y-axis is ring width (mm) on a logarithmic scale

APPENDIX

Ring width values (0.01mm) for the sequences measured

cn7mkt01									
254	220	193	201	159	200	350	274	303	303
290	266	339	338	253	183	195	177	170	192
218	269	196	260	236	231	224	270	223	220
121	180	158	86	63	75	86	100	141	181
175	131	162	120	187	145	59	62	84	109
109	102	130	107	144	154	185	183	139	91
95	102	100	107		10 .	100	100	10)	7.1
,0									
cn7mkt02									
131	121	92	121	218	266	205	219	152	190
237	172	149	181	165	199	213	88	35	33
47	38	87	77	103	112	102	74	53	89
168	134	163	161	129	193	88	123	102	84
99	161	140	111	145	213	210	168	202	166
31	42	39	44	54	41	92	83	99	154
191	117	144	101	64	64	67	84	92	67
55	131	203	189	154	222	152	243	108	99
74	69	117	113	96	110	111	210	100	
/ T	0)	11/	110	70	110	111			
cn7m	kt04								
88	96	122	123	215	238	228	238	241	203
61	68	42	45	84	106	122	127	179	202
232	186	220	175	106	122	153	131	95	88
68	98	229	308	177	207	132	219	73	61
78	73	83	107	104	123	107	134	162	174
209	191	00	107	101	120	107	10.	102	1/1
_0,	1/1								
cn7m	kt07								
34	35	29	33	29	41	59	59	56	68
89	75	75	85	92	113	80	76	75	60
88	92	129	116	148	165	146	206	60	54
42	46	50	44	57	74	115	91	112	95
150	92	100	86	83	113	168	147	250	145
174	281	237	132	99	142	228	195	192	160
279	193	247	182	127	94	136	125	107	92
103	118	162	156	120		100	1_0	10,	-
100	110	10_	100						
cn7mkt08									
170	257	240	242	239	300	264	242	394	198
200	145	130	205	250	269	284	290	138	148
101	152	148	152	53	52	49	69	78	110
144	149	110	66	48	47	25	22	28	31
28	33	49	62	91	86	84	111	89	103
113	99	119	87	86	103	65	91	83	105
77	94	86	83	105	39	42	31	33	54
65	71	66	84	87	100	149	163	87	99
91	78	69	122	111	106	75	81	140	131
	. =								

102	92	114	125	118	123	108	146	101	155
100	88	83	105	103	81	100	102	130	159
150	136	119	97	111					
cn7mkt09									
95	125	124	246	179	258	215	138	216	156
131	174	79	99	131	127	177	256	284	274
303	190	55	62	39	45	66	97	141	120
139	146	208	176	198	154	173	115	110	95
97	100	82	116	165	188	110	132	93	122
73	85	76	57	83	100	97	105	93	113
158	128	166	140						
cn7m	ıkt10								
156	182	163	154	77	110	125	98	142	141
175	171	119	134	142	109	177	129	127	122
174	188	185	222	145	244	134	229	129	143
276	220	310	187	261	281	247	255	252	209
119	198	209	291	214	315	173	186	239	256
150	139	179	193	234	203	234	159	207	151
cn7m	ıkt11								
400	431	358	473	409	514	554	612	704	402
305	565	390	391	391	355	358	419	366	442
378	360	395	339	326	258	340	301	322	355
369	346	272	316	268	260	288	302	90	63
78	69	48	50	53	47	59	52	85	66
63	73	70	109	194	172	140	116	149	200
cn7mkt12									
411	501	484	359	362	431	290	439	331	306
354	254	406	494	449	434	394	412	398	210
400	229	94	231	187	136	164	153	168	244
330	235	202							

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:

Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.