

Hardwick House Southam Road Banbury Cherwell Oxfordshire

Tree-ring Analysis of Oak Timbers

Martin Bridge and Cathy Tyers

HARDWICK HOUSE SOUTHAM ROAD BANBURY CHERWELL OXFORDSHIRE

Tree-ring Analysis of Oak and Elm Timbers

Martin Bridge and Cathy Tyers

NGR: SP 45899 42956

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

SUMMARY

Timbers from three roofs and a beam in the cellar were investigated. The roof of the east range included an inserted principal rafter to one truss and an inserted elm purlin, neither of which dated. Dated timbers from this roof gave a likely felling date range for the group of AD 1354–83, although evidence from the detached, but complete sapwood from one sample suggests the actual felling date was likely to be in the early part of this range.

Two timbers from the roof of the north range dated, one retaining the heartwood/sapwood boundary at AD 1468, giving a likely felling date range of AD 1477–1509. Two other principal rafters were thought to have originated from a single tree, but could not be dated.

The majority of timbers in the roof of the west range were of elm and, although three elm samples matched each other, none of the timbers dated.

A beam in the cellar retained the heartwood/sapwood boundary and gave a likely felling date range of AD 1558–90.

CONTRIBUTORS

Martin Bridge and Cathy Tyers

ACKNOWLEDGEMENTS

We are grateful to the owners for allowing access and to members of the Oxfordshire Buildings Record for their input during site work, and for supplying the plan used to record the sampling positions. Shahina Farid commissioned the work and produced Figure 1, and Alex Bayliss commented on earlier drafts of this report.

ARCHIVE LOCATION Historic England Archive The Engine House Firefly Avenue Swindon SN2 2EH

HISTORIC ENVIRONMENT RECORD OFFICE

Oxfordshire Historic Environment Record County Archaeology Planning Regulation Communities County Hall New Road Oxford OX1 1ND

DATE OF INVESTIGATION 2016–20

CONTACT DETAILS
Martin Bridge
UCL Institute of Archaeology
31–34 Gordon Square
London WC1H 0PY
martin.bridge@ucl.ac.uk

Cathy Tyers
Historic England
Cannon Bridge House
25 Dowgate Hill
London EC4R 2YA
cathy.tyers@historicengland.org.uk

CONTENTS

Introduction	
Methodology	1
Results	
Interpretation and Discussion	4
References	
Tables	9
Figures	25
PF	

INTRODUCTION

Hardwick House lies on the north side of the town of Banbury (Fig 1). This Grade II* listed farmhouse (LEN 1200559) is thought to be largely sixteenth century in date but with later alterations and extensions, although it is reputed to contain elements of an earlier manor house that was thought to lie to the north of the present building. It consists of three main elements, a long central (northern) range of stuccoed ironstone with a chimney stack at the west end, with shorter wings to the east and west, projecting southwards. The west range has a very similar roof style to that of the north, albeit in mostly elm rather than oak, although there are some important differences described later in this report. The west-range roof appears to have had the stack inserted into it, whilst the north-range roof is built around the stack (Clark *et al* 2017 unpubl). The east-range roof has comparatively small trusses and thought to be older. From the fifteenth to the seventeenth century the estate was in the hands of the Cope family, prominent in local and national affairs.

Dating was requested by David Brock (Historic England Inspector of Buildings and Areas) to inform Listed Building consent, and the building was also being investigated by the Oxfordshire Buildings Record (OBR) group (Clark *et al* 2017 unpubl).

METHODOLOGY

An assessment of the timbers for dendrochronological study sought accessible oak and elm timbers with more than 50 rings and where possible traces of sapwood, although slightly shorter sequences are sometimes sampled if little other material is available. Those timbers judged to be potentially useful were cored using a 16mm auger attached to an electric drill. The cores were labelled, and stored for subsequent analysis.

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. Those samples which had more than the 40 rings considered suitable for ring-width analysis had their tree-ring sequences measured to an accuracy of $0.01\,\mathrm{mm}$, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004). Cross-matching was attempted by a process of qualified statistical comparison by computer, supported by visual checks. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-

value ranges of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same-tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring (ie if it has only the spring vessels or earlywood formed, or the latewood or summer growth) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem* (*tpq*) or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 9–41 rings (Miles 1997). Appropriate sapwood estimates for elm are as yet unknown, but the results of the elm research project (Bridge 2020) suggest that the range of the number of sapwood rings in elm timbers is likely to be much lower than for oak in the same area. One problem that has been encountered in considering elm is that it has often proved very difficult to determine the position of the heartwood/sapwood boundary, even when it is known that the complete sapwood is present on a timber. It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

RESULTS

Following the initial assessment of dendrochronological potential, samples were taken from timbers from the three roofs (Figs 2, 3, 5, and 7), as well as a beam in the cellar below the north range (Fig 9). A number of floor timbers that were not exposed at the time of the original assessment were inspected when sampling was undertaken, but these had too few rings to be considered useful for ring-width dendrochronology, and were not sampled.

All samples are oak (*Quercus* sp.) unless otherwise stated. Details of the samples are given in Table 1, with the approximate positions of the roof samples being shown in Figure 2. Two samples were taken from an oak collar in the north-range roof (hwkb14a and hwkb14b), two from an elm (*Ulmus* sp.) collar in the west-range roof (hwkb20a and hwkb20b), and two from the oak beam in the cellar (hwkb30a and hwkb30b) to maximise the length of data available from these timbers. Four of

the samples taken (hwkb08, hwkb14a, hwkb14b, hwkb17, and hwkb18), had less than 40 rings, and were discarded from further study. Samples hwkb20b and hwkb30b also had less than 40 rings but, as the other samples from these timbers had in excess of 40 rings, both were measured. Sample hwkb09 had broken into two pieces during coring and whilst it was thought that no rings had been lost it was measured in two sections, hwkb09i and hwkb09ii. The ring-width data for each measured sample are given in the Appendix.

The east-range roof (Figs 2 and 3) was seen to have had a replacement principal rafter inserted on the west side of the northern truss (truss 1) and this was sampled (hwkb08) in the hope that it might provide the date of this intervention. Nine other timbers were sampled from this roof, including an elm purlin (hwkb10) that was thought possibly to have been inserted at the same time as the new principal rafter. The samples from three of the timbers had additional unmeasured sapwood sections, one (hwkb04) of which was detached but complete to the bark edge. Samples hwkb02 and hwkb04, from two principal rafters of the same truss, matched each other well (t = 12.8), and were thought to be from the same tree. A new mean series hwkb0204m was formed and used in subsequent analysis. Samples hwkb09i and hwkb09ii matched with other series and showed that there was no rings missing, and they were subsequently combined to form a single series hwkb09. The series from four cross-matched timbers (Table 2a) were combined to form a single site chronology HWKBeast, which was subsequently dated to the period AD 1184–1343, a selection of the strongest matches being shown in Table 3a. In addition, cross-matching was also identified between the ring series from hwkb03 and hwkb07 (t = 8.0 with 54 years of overlap; Fig 4). These were combined (hwkb0307) for further analysis but could not be dated. Two further measured samples from this roof also failed to date.

Nine timbers were sampled from various elements of the north-range roof (Figs 2 and 5). Two samples (hwkb11 and hwkb12), representing both principal rafters from truss 4, matched each other well (t = 8.1 with 86 years of overlap; Fig 6). The two ring series were combined (hwkb1112m) for further analysis, but could not be dated. The samples from a principal rafter (hwkb15) and a tiebeam (hwkb16) from truss 3 matched each other (t = 4.4 with 54 years overlap) and these too were combined (hwkb1516m) for further analysis. The new sequence, hwkb1516m, dated to the period AD 1355–1468, a selection of the strongest matches being shown in Table 3b. Neither of the two remaining measured samples could be dated individually when compared with the reference material.

The roof timbers of the west-range roof (Fig 7) were found to be of both oak and elm, although the purlins were all noted as oak. These were sampled as they were relevant to the then on-going Historic England funded project on elm timbers from historic buildings (Bridge 2020). The two samples from the truss 4 collar, hwkb20a and hwkb20b cross-matched (t = 5.7 with 36 years of overlap) and were combined to produce a single timber series. Three of the series from elm timbers cross-matched with each other (Table 2b; Fig 8) and were combined into a single site chronology, HWKBelm. This elm site chronology was compared with the oak reference database, as well as the few extant dated elm site chronologies, but could not be dated. The remaining four measured elm timber series and three measured oak series could not be dated by ring-width dendrochronology either.

The two samples, hwkb30a and hwkb30b from the beam in the cellar (Fig 9) were known to overlap by only a small number of rings, 30b having been taken to reach the h/s boundary. Series hwkb30a was initially dated and the overlap confirmed by the comparison of hwkb30b to reference chronologies as well, thus they were combined to form a single series, hwkb30, which dated to the period AD 1460–1549. A selection of the strongest matches is shown in Table 3c.

INTERPRETATION AND DISCUSSION

Much useful discussion of the development of the building is given in report by the Oxfordshire Buildings Record (Clark et al 2017 unpubl). This provides evidence that the earliest dated roof in the east range (Fig 3) may have been dismantled and re-assembled at some point, and has certainly undergone changes in more recent times. Its lack of sooting is of interest, given the dating evidence obtained from the dendrochronological analysis. The mean heartwood/sapwood boundary date for the three dated trees (Fig 10) is AD 1342, giving a likely felling date range of AD 1354-83, allowing for the unmeasured sapwood rings on hwkb02. The evidence from sample hwkb04, however, suggests that felling probably occurred in the early part of this range as it was noted during coring that only a very small number of rings were likely to have been lost from the main heartwood section of the core and the detached sapwood section. Strong cross-dating for the site chronology HWKBeast is obtained against chronologies from the southern midlands region, but a very high level of similarity is found with the site chronology from Warden's Hall at Merton College, Oxford (Table 3a). This may suggest the timbers grew in close proximity, if not in the same woodland. The Merton College records show that at least some of the timber for the Warden's Hall was bought from Woodstock, about 25km from Hardwick House (Bott 2006).

Timbers hwkb03 and hwkb07 from the roof of the east range cross-match (see above, and Fig 4), but do not date, meaning that it is not possible to confirm or deny the potential late fourteenth-century date for this range, or whether these timbers are later insertions, replacements, or modifications.

The north-range roof (Fig 5) is dated by just two timbers, with one retaining the heartwood/sapwood boundary, giving a likely felling date range of AD 1477–1509 for both timbers assuming that they are coeval (Fig 10). Documentary research presented by Clark *et al* (2017 unpubl) shows the Cope family acquired the property in AD 1496, and it seems quite likely that major work at the site would have occurred soon after this. The matches for these timbers (Table 3b) are widely spread and, apart from a likely English origin, little more can be said about their geographical origin.

Two further timbers from the north range, hwkb11 and hwkb12 cross-match (Fig 6), but cannot be dated by ring-width dendrochronology. So, while they are clearly coeval, it is not possible to confirm whether they are also late-fifteenth/early sixteenth century in origin, or later replacements or modifications.

Superficially the west- and north-range roofs look very similar (Figs 5 and 7), with many medieval characteristics such as curved collars, curved windbraces, and scratched assembly marks. Neither shows any sign of sooting, but the timbers of the

4

west range have well preserved coverings of red ochre and red lead. Fabric analysis, however, reveals differences between the two roofs, the west range having the windbraces supporting the lower tier of purlins, whilst in the north range they support the upper tier. There are also differences in the way the principal rafters support the purlins, and the joints where the principals meet. The chimney stack at the junction of the two roofs looks to have been inserted into the west-range roof, whilst the north-range roof appears to have been built around the stack. All of this evidence shows that the west-range roof was built before the north-range roof, but Clark *et al* (2017 unpubl) suggests that the difference in date was not great. The west-range roof was constructed predominantly of elm but, although three of the elm timbers were shown to be coeval (Table 2b and Fig 8), none of the elm or oak timbers sampled from this roof could be dated. Bridge (2020) concluded that elm can only very rarely be dated against oak chronologies and, thus, its failure to date in this case is therefore not unusual.

The cellar timber under the north range (Fig 9) gives a likely felling date range of AD 1558–90, although the brick lining suggests construction in the nineteenth century. Although this series matches over a quite wide geographical area (Table 3c), it is likely the timber was of local origin.

REFERENCES

Arnold, A J, Howard, R E, and Litton, C D, 2004 *Tree-ring analysis of timbers from the roof of St Catherine's Chapel (South-East Transept), Wells Cathedral, Somerset*, Centre for Archaeol Rep, **64/2004**

Arnold, A, Howard, R, and Litton, C, 2007 Leicester's Gatehouse, Kenilworth Castle, Kenilworth, Warwickshire, Tree-ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 8/2007

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Bott, A, 2006 Lost, little known and unbuilt Merton, *Postmaster and The Merton Record*, **3**, 81–9

Bridge, M C, 1983 The use of tree-ring widths as a means of dating timbers from historical sites, unpubl PhD thesis, CNAA

Bridge, M C, 1997a *Tree-ring analysis of timbers from buildings at Forty Hall, Enfield, London*, Anc Mon Lab Rep, **103/97**

Bridge, M C, 1997b *Tree-ring analysis of timbers from Bruce Castle, Tottenham, London*, Anc Mon Lab Rep, **69/97**

Bridge, M C, 2002 *Tree-ring Analysis of Timbers from Meare Manor Farmhouse, St Mary's Road, Meare, Somerset*, Centre for Archaeol Rep, **103/2002**

Bridge, M C, 2020 Elm dendrochronology, Vernacular Architect, 51, in press

Bridge, M C, and Miles, D, 2017 Tree-ring Date Lists, *Vernacular Architect*, **48**, 108–16

Bridge, M C, and Miles, D, 2018 Tree-Ring Date Lists, *Vernacular Architect*, **49**, 135–41

Bridge, M C, and Tyers, C, 2020 *The Chequers Inn, Goddard's Lane, Chipping Norton, Oxfordshire: tree-ring dating of oak timbers*, Historic England Res Rep Ser, **2/2020**

Clark, D, Thynne, D, Horner, H, and Clark, P, 2017 unpubl *Hardwick House, Southam Road, Banbury, Oxon, OX16 1SU*, Oxfordshire Buildings Record Rep, **OBR.274**

Groves, C, Hillam, J, and Pelling-Fulford, F, 1999 Dendrochronology, in *Excavations on Reading Waterfront sites 1979–1988* (eds J W Hawkes and P J Fasham), Wessex Archaeol Rep, **5**, 65–8

Haddon-Reece, D, Miles, D H, and Munby, J T, 1990 Tree-ring Date Lists, *Vernacular Architect*, **21**, 46–50

Howard, R, Laxton, R, and Litton, C, 2002 *Tree-ring Analysis of Timbers from the Rigging Loft and Chapel Undercroft, Trinity House, Broad Chare, Newcastle upon Tyne, Tyne and Wear*, Centre for Archaeol Rep, **63/2002**

Howard, R, Litton, C, and Arnold, A, 2006 *Tree-ring Analysis of Timbers from Lord Leicester's Stables, Kenilworth Castle, Warwickshire*, English Heritage Res Dept Rep Ser, **21/2006**

Lageard, J, 2000 unpubl *Tree-ring analysis of timbers from the Round House, Nantwich, Cheshire*, unpubl computer file *NANTRHM*, Manchester Metropolitan University

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Miles, D H, 2003 Dating Buildings and Dendrochronology in Hampshire, in *Hampshire Houses 1250 - 1700: Their Dating and Development* (ed E Roberts), 220–6, Southampton (Hampshire County Council)

Miles, D H, 2004 unpubl Working compilation of reference chronologies centred around Somerset by various researchers, unpubl computer file SOMRST04, Oxford Dendrochronology Laboratory

Miles, D H, and Bridge, M C, 2016 Tree Ring Dating Lists, *Vernacular Architect*, **47**, 94–6

Miles, D H, and Worthington, M J, 1997 Tree-ring dates, *Vernacular Architect*, **28**, 159–81

Miles, D H, and Worthington, M J, 1998 Tree-ring dates, *Vernacular Architect*, **29**, 111–29

Miles, D H, and Worthington, M J, 2000 Tree-ring dates, *Vernacular Architect*, **31**, 90–113

Miles, D H, and Worthington, M J, 2001 Tree-ring dates, *Vernacular Architect*, **32**, 74–86

Miles, D H, and Worthington, M J, 2002 Tree-ring dates, *Vernacular Architect*, **33**, 81–102

Miles, D H, Worthington, M J, and Bridge, M C, 2007 Tree-ring dates, *Vernacular Architect*, **38**, 120–39

Miles, D H, Worthington, M J, and Bridge, M C, 2008 Tree-ring dates, *Vernacular Architect*, **39**, 135–46

Miles, D H, Bridge, M C, and Marshall, G, 2014 Tree Ring Dating Lists, *Vernacular Architect*, **45**, 119–20

Mills, C M, 1988 Dendrochronology of Exeter and its application, unpubl PhD thesis, Sheffield Univ

Tyers, I, 2004 Dendro for Windows Program Guide 3rd edn, ARCUS Rep, 500b

Tyers, I, and Groves, C, 1999 Tree-ring dates from Sheffield University: List 104, *Vernacular Architect*, **30**, 113–28

Tyers, I, and Groves, C, 2004 unpubl *Working compilation of reference* chronologies from Devon by various researchers, unpubl computer file DEVN2004, Sheffield Dendrochronology Laboratory

Wilson, R, Miles, D, Loader, N J, Melvin, T, Cunningham, L, Cooper, R, and Briffa, K, 2012 A millennial long March-July precipitation reconstruction for southern-central England, *Climate Dynamics*, **40**, 997–1017

Worthington, M J, and Miles, D W H, 2003 *The Tree-Ring Dating of the Chapter House Roof, Christ Church, Oxford*, Centre for Archaeol Rep, **3/2003**

246-2020

TABLES

Table 1: Details of samples taken from Hardwick House, Southam Road, Banbury, Oxfordshire (all sampled timbers are of oak, Quercus sp., unless otherwise indicated)

Sample	Timber and position	No of	Mean	Dates	h/s	Sapwood	Mean	Felling
number		rings	ring	spanning	boundary	rings	sensitivity	date
			width	(AD)	(AD)			ranges
			(mm)					(AD)
East-rang	e Roof (trusses numbered from the north)	•	•	•				•
hwkb01	Collar, truss 2	160	1.05	1184-1343	1342	1	0.22	1351-83
hwkb02	East principal rafter, truss 2	143	1.01	1198-1340	1340	h/s	0.25	1354-82†
						(+14NM)		
hwkb03	East lower purlin between truss 2 and south wall	64	1.58	-	-	9 (+9NM)	0.26	-
hwkb04	West principal rafter, truss 2	150	1.18	1193-1342	1342	h/s	0.26	1354-82†
						(+11CNM)*		
hwkb05	West lower purlin between truss 2 and south wall	90	1.17	-	-	-	0.30	
hwkb06	West lower purlin, middle bay	43	2.81	-	-	-	0.18	
hwkb07	West lower purlin, north bay	66	1.71	-	-	2	0.22	-
hwkb08	West principal rafter, truss 1 (replacement)	<40	NM	-	-	-	-	-
hwkb09i	Collar, truss 1 (inner)	103	1.13	1200-1302	-	-	0.27	-
	Collar, truss 1 (outer)	41	0.64	1302-1342	1342	h/s	0.18	-
hwkb09ii								
hwkb09	Collar, truss 1 (combined 09i and 09ii)	143	0.99	1200-1342	1342	h/s	0.24	1351-83
hwkb10	West upper purlin, north bay (replacement) (elm,	<40	NM	-	-	-	-	-
	Ulmus sp.)							
North-ran	rige Roof (trusses numbered from the west)							
hwkb11	North principal rafter, truss 4	101	1.86	-	-	h/s	0.20	-
hwkb12	South principal rafter, truss 4	86	1.72	-	-	h/s	0.20	-
hwkb13	Lower south purlin, bay 3-4	56	2.32	-	-	h/s	0.21	-

Ļ	٠
ŧ	,
Ÿ,	٠
7	3
\sim	5

Sample	Timber and position	No of	Mean	Dates	h/s	Sapwood	Mean	Felling
number	-	rings	ring	spanning	boundary	rings	sensitivity	date
			width	(AD)	(AD)			ranges
			(mm)					(AD)
hwkb14	Collar, truss 3	<40	NM	-	-	-	-	-
hwkb15	South principal rafter, truss 3	91	1.94	1355-1445	-	-	0.23	after 1454
hwkb16	Tiebeam, truss 3	77	1.20	1392–1468	1468	h/s	0.17	1477- 1509
hwkb17	North lower purlin, bay 3-4	<40	NM	-	-	-	-	-
hwkb18	Collar, truss 2	<40	NM	-	-	-	-	-
hwkb19	North principal rafter truss 1 (against stack)	59	1.51	-	-	?h/s	0.30	-
West-range	Roof (trusses numbered from the south)	•					•	
hwkb20	Collar, truss 4 (elm, <i>Ulmus</i> sp.)	56	2.38	-	-	2	0.22	-
hwkb20a	Collar, truss 4 (elm, <i>Ulmus</i> sp.)	55	2.41	-	-	-	0.22	-
hwkb20b	Collar, truss 4 (elm, <i>Ulmus</i> sp.)	37	2.14	-	-	2	0.22	-
hwkb21	West principal rafter, truss 4 (elm, <i>Ulmus</i> sp.)	72	2.02	-	-	h/s	0.39	-
hwkb22	East principal rafter, truss 4 (elm, <i>Ulmus</i> sp.)	47	2.32	-	-	-	0.36	-
hwkb23	Collar, truss 3 (elm, <i>Ulmus</i> sp.)	52	2.09	-	-	h/s	0.23	-
hwkb24	West principal rafter, truss 3 (elm, <i>Ulmus</i> sp.)	53	2.09	-	-	9	0.27	-
hwkb25	Collar, truss 2 (may not be primary)	47	1.32	-	-	-	0.23	-
hwkb26	West principal rafter, truss 2 (elm, <i>Ulmus</i> sp.)	52	1.96	-	-	h/s	0.43	-
hwkb27	East principal rafter, truss 2 (elm, <i>Ulmus</i> sp.)	40	2.67	-	-	h/s	0.34	-
hwkb28	Tiebeam, truss 2	43	3.30	-	-	-	0.20	-
hwkb29	Tiebeam, truss 3	63	1.26	-	-	-	0.20	-
Cellar								
hwkb30	Large beam embedded in wall	90	1.51	1460-1549	1549	h/s	0.23	1558-90
hwkb30a	Large beam embedded in wall	74	1.63	1460-1533	-	-	0.22	-
hwkb30b	Large beam embedded in wall	24	1.05	1526-1549	1549	h/s	0.24	-

Key: NM = not measured; h/s = heartwood/sapwood boundary; C = complete sapwood, winter felled; * = a small number of rings may have been lost between the heartwood only core section and the detached sapwood; † date range based on same-tree pair

Table 2a: Cross-matching between the samples from the east-range roof included in the site master chronology HWKBeast, values of t=3.5 are considered significant

	t-value (number of years overlap)						
Sample No	hwkb02	hwkb04	hwkb09				
hwkb01	5.2 (143)	5.5 (150)	7.9 (143)				
hwkb02		12.8 (143)	8.9 (141)				
hwkb04			7.5 (143)				

Table 2b: Cross-matching between the elm samples from the west-range roof included in the site master chronology HWKBelm

	t-values (number of years					
	overlap)					
Sample No	hwkb22	hwkb27				
hwkb21	7.4 (38)	5.7 (29)				
hwkb22	4.3 (38)					

246-2020

Table 3a: Dating evidence for site chronology HWKBeast AD 1184–1343

Source region:	Chronology name:	Publication reference:	File name:	Span of chronology (AD)	Overlap (years)	t-value
Regional chrono	ologies					
Somerset	Somerset Master Chronology	Miles 2004 unpubl	SOMRST04	770-1979	160	13.6
Central England	South Central England	Wilson et al 2012	SCENG	663-2009	160	13.2
Hampshire	Hampshire Master Chronology	Miles 2003	HANTS02	443-1972	160	11.4
Devon	Devon Master Chronology	Tyers and Groves 2004 unpubl	DEVN2004	775–1799	160	9.0
Site chronologie	es	•				
Oxfordshire	Merton Wardens Hall	Miles and Bridge 2016	MERTON1	1169-1298	115	12.4
Berkshire	Reading Waterfront	Groves et al 1999	READING	1160-1407	160	10.9
Devon	Exeter Cathedral	Mills 1988	EXCATH1	1137-1332	149	10.5
Somerset	Wells Cathedral, St Catherine's Chapel	Arnold et al 2004	WLSC0203	1169–1325	142	10.3
Gloucestershire	Winterbourne Tithe Barn	Miles and Worthington 2000	WNTERBRN	1177-1341	158	9.8
Oxfordshire	The Great Barn, Lewknor	Haddon-Reece et al 1990	LEWKNORx	1188-1343	156	9.6
Hampshire	Prior's Hall roof	Bridge and Miles 2018	DWCx2	1284-1375	60	9.4
Somerset	Manor Farmhouse, Meare	Bridge 2002	MEAREMNR	1156-1314	131	9.4
Oxfordshire	Manor Farm, Stanton St John	Miles and Worthington 1998	STNSTJN1	1131-1304	121	9.4
Oxfordshire	Christ Church Chapter House, Oxford	Worthington and Miles 2003	СНСНСН	1142–1260	77	9.2
Somerset	North Cadbury Court	Miles and Worthington 1998	NCADBRY3	1243-1343	101	9.1

Table 3b: Dating evidence for site chronology hwkb1516m AD 1355-1468

Source region:	Chronology name:	Publication reference:	File name:	Span of	Overlap	<i>t</i> -value
				chronology	(years)	
				(AD)		
Shropshire	Council House, Shrewsbury Castle	Miles and Worthington 1997	COUNCLHS	1368-1500	101	7.3
Tyne and Wear	Rigging Loft, Trinity House, Newcastle upon Tyne	Howard et al 2002	NWCASQ01	1397–1524	72	6.3
Oxfordshire	Chequers Inn, Chipping Norton	Bridge and Tyers 2020	CNCHQ345	1362-1438	77	6.1
Shropshire	Aston Eyre, gatehouse	Miles and Worthington 1998	ASTNEYR3	1357–1612	112	5.8
Essex	Park Farm Barn, Liston	Bridge and Miles 2017	LISTON	1340-1464	110	5.6
London	Martin Tower, Tower of London	Bridge 1983	MARTIN	1379-1534	90	5.6
Gloucestershire	Owlpen Manor Barn	Bridge and Miles 2017	OWLPEN2	1337-1445	91	5.6
Warwickshire	Kenilworth Castle	Howard et al 2006	KNWESQ01	1354-1532	114	5.6
London	Forty Hall, Enfield	Bridge 1997a	FORTYHLL	1364–1475	105	5.6
Herefordshire	Olde Salutation Inn, Weobley	Tyers and Groves 1999	WEOB_T6	1355-1580	114	5.5

_

Table 3c: Dating evidence for site series hwkb30 AD 1460–1549

Source region:	Chronology name:	Publication reference:	File name:	Span of	Overlap	<i>t</i> -value
				chronology (AD)	(years)	
Oxfordshire	The Stores, East Hendred	Miles and Worthington 2001	ehh4	1481-1535	55	5.7
Cheshire	The Round House, Nantwich	Lageard 2000 unpubl	NANTRHM	1388-1538	79	5.7
Worcestershire	Granary, Meadow Farm, Redditch	Miles et al 2007	REDGRAN	1402-1597	90	5.6
Warwickshire	Baddesley Clinton	Miles and Worthington 2002	BADESLY3	1423-1577	90	5.6
Warwickshire	Palmer's Farm, Wilmcote	Miles and Worthington 2000	ARDEN2	1371-1568	90	5.5
Warwickshire	Leicester's Gatehouse, Kenilworth Castle	Arnold et al 2007	KNWCSQ02	1390-1547	88	5.4
Berkshire	Greenham Mill, Newbury	Miles and Worthington 2002	GREENHAM	1373-1589	90	5.4
Buckinghamshire	Nos 3 & 4 High Street, West Wycombe	Miles et al 2014	WWG	1464-1553	86	5.3
London	Bruce Castle, Tottenham	Bridge 1997b	BRUCE2	1421-1544	85	5.1
Shropshire	Merchant's House, Ludlow	Miles et al 2008	LUDLOW15	1479–1585	71	5.1

FIGURES

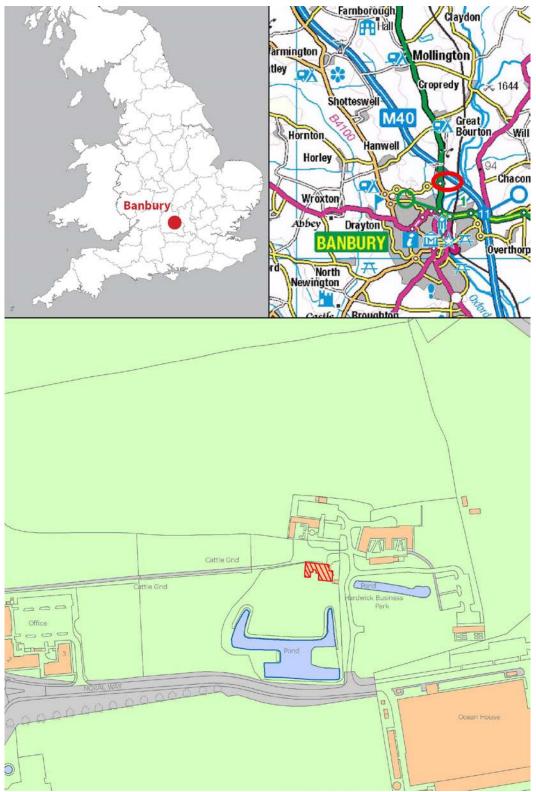


Figure 1: Maps to show the location of Hardwick House, Banbury in Oxfordshire, marked in red. Scale: top right 1:115000; bottom 1:3000. © Crown Copyright and database right 2020. All rights reserved. Ordnance Survey Licence number 100024900. © British Crown and SeaZone Solutions Ltd 2020. All rights reserved. Licence number 102006.006. © Historic England

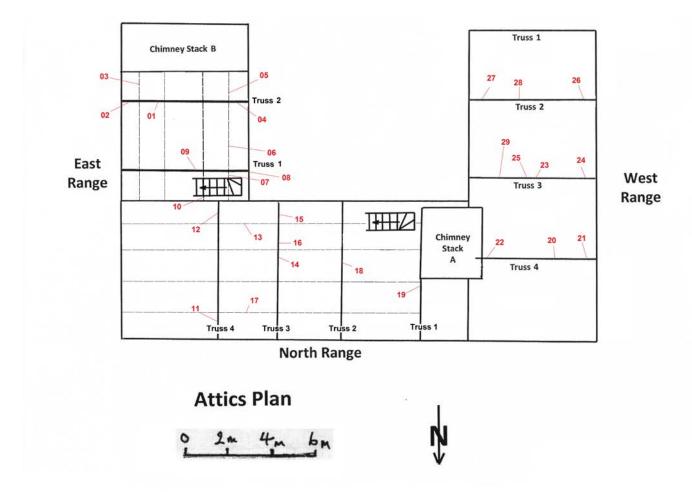


Figure 2: Plan of the attics, showing position of samples taken for dendrochronology, after a plan supplied by the Oxfordshire Buildings Record (Clark et al 2017 unpubl)

Figure 3: View of the east-range roof, looking south (photograph Martin Bridge)

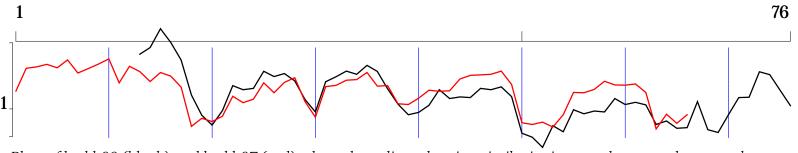


Figure 4: Plots of hwkb03 (black) and hwkb07 (red) where they align, showing similarity in growth pattern between the two series, the x-axis is relative years and the y-axis ring-width (mm) on a logarithmic scale

Figure 5: View of truss 3 in the north range, looking south-west (photograph Oxfordshire Buildings Record)

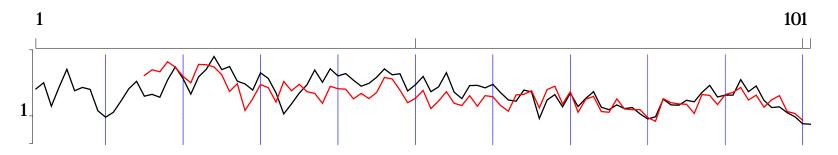


Figure 6: Plots of hwkb11 (black) and hwkb12 (red) where they align, showing similarity in growth pattern between the two series, the x-axis is relative years and the y-axis ring-width (mm) on a logarithmic scale

Figure 7: View of the west-range roof, looking south, with the inserted stack to the left (photograph Martin Bridge)

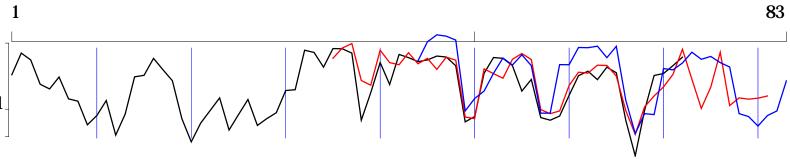


Figure 8: Plots of the three elm series hwkb21 (black), hwkb22 (red), and hwkb27 (blue) where they align, showing similarity in growth pattern between the three series, the x-axis is relative years and the y-axis ring-width (mm) on a logarithmic scale

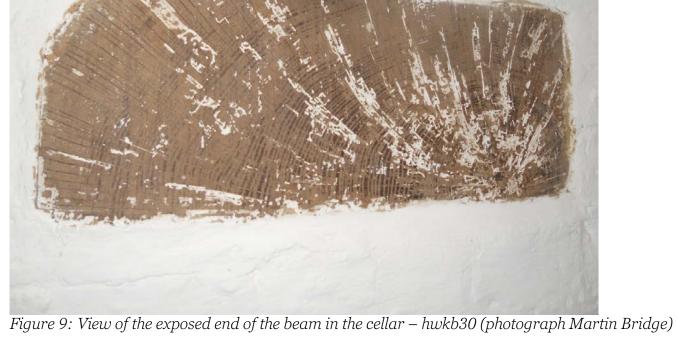


Figure 10: Bar diagram showing the relative positions of overlap of the dated samples, along with their actual felling dates or likely felling date ranges. White bars represent heartwood rings, yellow hatched bars represent sapwood rings, and narrow sections of bar represent additional unmeasured rings

APPENDIX

Ring width values (0.01mm) for the sequences measured

Oak

hwkb	01								
98	170	140	209	85	89	110	94	72	128
112	136	130	93	136	94	52	84	63	69
51	82	107	68	102	82	83	83	69	89
83	102	81	87	75	90	95	80	63	81
57	75	88	76	93	102	107	78	63	80
140	161	76	147	160	189	179	128	123	155
115	139	154	152	108	152	141	147	128	145
136	148	93	136	98	101	98	103	153	129
106	123	136	122	95	100	122	117	110	138
127	87	100	83	86	92	110	84	84	106
79	80	132	82	65	102	126	99	129	147
116	104	111	100	94	99	104	145	96	73
61	71	95	83	104	95	109	83	85	82
91	123	140	150	72	127	101	119	133	108
106	71	88	101	111	107	82	49	41	99
115	114	79	113	75	117	94	128	124	146
110	11.	, ,	110	70	11/	, ,	120	14.	110
hwkb	02								
192	199	195	118	111	67	84	117	110	102
134	59	81	141	134	117	125	145	117	132
99	141	189	229	124	138	124	158	189	143
167	215	119	77	69	80	114	125	77	127
112	103	85	68	63	92	64	71	110	125
39	96	95	105	105	135	95	101	110	68
47	34	62	60	75	42	67	51	65	48
44	63	88	89	79	64	65	33	41	57
73	85	101	116	94	54	62	64	90	39
41	59	97	80	68	79	72	63	56	76
72	80	121	108	135	75	83	114	127	125
95	125	127	138	129	125	99	138	171	177
123	105	79	129	151	151	129	80	56	70
99	75	35	47	68	97	103	105	129	101
119	198	137	.,	00	,	100	100	1-/	101
	1,0	10,							
hwkb	03								
368	431	675	486	320	139	86	68	96	174
158	163	245	216	232	195	125	93	191	215
246	228	282	244	161	112	87	92	109	158
128	133	131	163	158	169	134	56	51	40
67	58	98	89	95	93	128	111	117	110
69	75	63	64	119	61	57	87	131	132
242	226	156	108						
h-,-1-1-4	0.4								
hwkb		100	105	01	01	105	1.40	1.49	110
70 74	63	122	105	91	81	125	148	143	118
74 72	80	87	90	77	96	46	63	88	80
72	76	71	80	98	82	140	207	237	136
163	161	144	268	282	462	361	195	145	98

123	173	207	115	241	120	169	120	94	123
164	107	120	125	157	64	132	114	112	106
142	113	111	136	67	63	46	92	91	119
60	120	117	86	81	41	70	75	103	71
78	40	32	43	44	66	77	76	103	99
67	71	75	86	47	43	68	90	75	74
89	72	66	68	92	70	112	145	157	190
124	75	127	163	190	209	192	157	147	161
147	137	150	182	190	113	96	121	140	182
158	96	89	81	96	104	123	102	81	105
177	123	162	128	169	110	148	119	154	191
hwkb	05								
249	203	113	49	111	189	371	312	135	128
186	106	114	129	121	167	159	182	224	154
216	112	69	49	71	253	196	121	129	49
74	52	47	42	84	70	75	70	61	79
85	89	88	113	60	61	62	104	80	76
72	170	123	152	114	196	203	164	143	110
195	155	82	126	107	70	70	89	63	68
80	73	86	55	131	118	135	81	60	180
130	107	133	120	89	75	91	78	165	160
	0.4								
hwkb		004	4.60	40.4		- 0.4	0.40	222	040
711	519	294	469	424	503	524	363	329	219
200	345	351	321	312	330	329	365	325	317
199	191	224	195	302	310	280	261	214	170
122	146	91	146	134	149	187	175	193	180
194	237	231							
hwkb									
153	263	272	289	266	321	235	261	291	329
186	276	243	192	238	218	168	66	80	74
84	135	116	126	186	147	188	210	119	82
170	175	198	201	238	172	174	113	111	129
156	152	154	204	222	225	228	246	179	72
69	73	65	87	148	147	159	193	177	176
181	148	62	88	71	87				
hwkb	09i								
101	89	90	129	47	105	85	61	53	63
54	72	61	62	67	78	80	105	68	125
177	159	103	86	117	161	209	145	264	306
197	111	82	87	143	171	93	146	150	128
133	127	124	175	145	111	198	155	76	108
126	134	127	167	174	205	160	229	197	115
146	197	225	122	77	145	91	112	90	78
90	121	91	97	87	54	55	56	64	71
115	110	112	68	107	89	134	64	49	126
103	93 65	120	99	103	73	54	63	44	54
62	65	82							
hwkb	00;;								
		11	66	76	66	66	EO.	E 1	5 0
79	49 50	41	66 70	76	66	66 50	59	51 50	52
55 70	59	51	79	83	86	59	43	59	50
79	51	51	68	59	63	83	82	43	44
⊕ ні	CTOD	IC FN	CI ANI	`			26		

51 79	68	91	89	75	62	62	62	64	70
hwkb	11								
194	214	125	192	297	184	192	189	108	102
117	141	192	224	158	175	155	221	319	247
167	254	300	416	320	322	229	209	185	280
247	165	108	126	172	206	298	227	306	255
277	230	204	216	247	305	267	274	185	200
252	184	201	268	179	151	205	208	199	208
170	142	152	183	171	99	143	163	126	169
127	151	176	123	112	132	120	123	104	91
98	145	131	127	147	141	176	202	151	159
168	238	179	198	150	121	121	108	102	82
88									
hwkb	12								
262	290	284	346	323	245	224	334	338	315
268	175	207	112	152	225	197	144	212	177
207	183	191	136	197	180	186	143	170	141
167	247	235	200	136	152	187	122	150	177
136	121	164	128	160	158	127	118	156	173
188	118	181	206	137	175	109	152	155	110
103	155	118	119	112	94	93	151	144	127
133	104	166	164	134	163	173	194	146	165
123	152	161	105	109	93				
hwkb	13								
311	252	179	156	162	173	120	57	77	64
71	50	55	102	231	250	501	468	364	362
358	403	375	305	365	402	333	540	645	421
264	292	264	229	174	186	208	137	160	129
132	151	115	103	169	188	178	235	207	197
169	149	142	168	236	240				
hwkb	15								
212	236	115	145	100	146	365	347	322	275
122	99	259	390	471	442	324	379	284	151
237	310	293	295	425	263	213	223	176	165
161	232	254	228	181	189	161	214	165	124
98	98	143	162	199	107	153	147	196	240
238	250	156	129	180	184	210	193	216	158
162	110	124	117	119	177	182	168	220	196
165	87	97	122	123	84	89	126	110	92
95	80	90	95	110	153	188	179	308	284
207									
hwkb	16								
142	113	124	89	113	121	119	132	104	115
104	156	151	117	118	100	85	91	106	102
91	98	62	80	51	46	49	54	60	87
81	116	130	107	83	69	100	114	109	87
105	77	60	59	54	95	99	76	87	168
138	197	213	147	136	168	176	153	185	208
197	187	171	161	178	192	162	174	180	205
175	179	148	161	86	81	60			

hwkb	19								
345	442	368	411	201	279	261	202	288	307
193	142	163	229	202	221	84	85	60	85
69	51	99	131	248	231	221	240	184	195
232	146	168	178	111	181	138	90	60	104
77	75	61	39	84	44	39	50	76	78
48	81	125	98	54	39	62	84	78	, 0
10	01	120	70	01	0)	02	01	70	
hwkb	25								
230	276	290	274	206	216	264	254	159	169
67	44	29	30	40	52	62	88	109	98
113	66	147	131	87	106	105	126	126	114
64	104	118	77	139	139	106	108	116	132
144	139	115	163	143	152	181			
hwkb	28								
488	544	526	492	407	367	343	359	430	400
538	639	302	150	274	326	299	314	446	504
454	474	524	531	401	431	143	90	71	104
134	158	147	191	224	196	251	277	226	227
223	230	320							
hwkb	29								
262	320	255	312	312	244	200	191	228	235
170	166	201	96	66	54	57	72	81	67
109	104	92	119	129	158	143	178	135	155
137	101	83	80	71	61	43	36	58	56
51	61	83	66	67	54	72	84	101	132
112	81	61	79	110	96	99	111	151	172
123	134	178							
hwkb									
205	245	200	172	142	169	179	193	185	152
122	163	134	263	200	258	232	359	177	276
316	310	225	236	228	129	149	212	196	272
246	234	154	258	298	184	218	216	112	96
83	92	91	110	115	136	95	82	102	133
89	92	124	109	102	104	104	78	126	111
68	89	79	77	83	118	166	150	145	149
79	180	146	144						
1 11	0.01								
hwkb		100	110	60	107	110	100	107	170
128	119	130	113	63	126	118	108	107	179
109	93	64	74	109	93	64	73	57	58
109	128	153	142						
Elm									
	0.0								
hwkb		o = -	00-	0.1.	a=-	0 : -	. :=	00-	
281	263	272	338	216	272	348	247	209	331
160	168	376	441	359	257	303	285	221	239
207	269	296	284	291	293	311	184	103	142
211	240	336	335	322	320	297	284	280	198
106	92	91	111	63	84	104	122	172	247
300	245	267	241	234					

hwkb	20b								
312	351	320	341	287	231	275	305	199	155
129	148	274	351	315	353	356	297	254	258
189	105	76	84	99	61	90	102	122	182
232	203	155	180	241	171	104			
	_00	100	100		_,_	-0.			
hwkb	21								
227	380	323	181	162	215	128	121	69	86
123	54	89	216	224	335	256	197	80	46
72	97	131	61	88	126	68	80	92	156
159	407	386	272	423	421	380	77	148	304
180	368	341	310	323	354	346	281	74	84
235	342	335	282	154	203	82	77	85	139
222	247	202	272	238	77	33	98	223	234
282	345								
hwkb	22								
336	429	477	198	177	407	303	288	384	295
335	258	345	321	83	80	261	233	209	328
376	326	99	90	96	176	241	236	285	283
220	97	55	106	137	170	229	416	204	102
169	388	109	131	127	130	137			
hwkb									
186	244	507	641	464	262	353	441	368	266
247	241	252	237	344	265	282	213	187	203
276	219	162	50	73	73	98	105	108	138
184	195	216	232	213	172	123	122	166	142
134	158	139	150	121	134	92	105	144	126
78	196								
	0.4								
hwkb		007	074	070	0.60	077	006	000	004
116	151	207	274	278	262	277	306	288	224
198	259	156	100	136	173	249	325	367	264
284	102	136	172	204	238	273	190	106	85
242	292	139	84	101	158		265	267	256
208	258	264	265	200	155	186	217	137	297
174	189	162							
hwkb	26								
160	46	38	220	418	362	429	387	367	478
129	308	36 442	254	186	98	64	55	239	245
233	208	203	59	40	106	124	191	239 145	140
233 340	369	203 94	69	40 140	211	157	186	208	114
178	93	94 77	56	82	128	215	202	178	249
142	93 310	//	30	02	120	213	202	1/0	249
142	310								
hwkb	27								
316	497	587	568	518	96	129	154	235	338
286	365	282	91	91	289	288	434	432	448
341	446	124	56	90	88	263	255	300	388
328	351	303	273	90	84	67	86	96	196
J _ U	551	550	_, 0	- 0	٥.	٠,	50	20	2/0

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:

Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.