

Great Gransden Windmill, Mill Road, Great Gransden, Cambridgeshire

Further Tree-ring Dating and Oxygen Isotope Dendrochronology of Oak Timbers

Martin Bridge, Cathy Tyers, Neil J Loader, Danny McCarroll, Darren Davies, and Giles H F Young

Discovery, Innovation and Science in the Historic Environment

Research Report Series no. 49/2022

Front Cover: Aerial view of Great Gransden June 2018 (c) Martin Bridge.

Research Report Series 49/2022

GREAT GRANSDEN WINDMILL MILL ROAD GREAT GRANSDEN CAMBRIDGESHIRE

Further Tree-ring Dating and Oxygen Isotope Dendrochronology of Oak Timbers

Martin Bridge, Cathy Tyers, Neil J Loader, Danny McCarroll, Darren Davies, and Giles H F Young

NGR: TL 27717 55522

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

SUMMARY

Samples were taken from 18 timbers forming various elements of the mill, including two *ex situ* timbers, a brake handle, and an offcut found during ongoing repairs. Documentary evidence suggests that the mill was present in AD 1612, but the main post dated, by ring-width dendrochronology, to the mid-seventeenth century, and is likely to have been put in place at the same time as the crown-tree, which had a felling date of winter AD 1644/5I derived by isotope dendrochronology. The *ex situ* brake handle was dated isotopically to a felling date range of AD 1757–90I, and a sheer had a likely felling date range of AD 1771–1804 provided by ring-width dendrochronology, suggesting they may be contemporaneous. Three timbers from the buck were from trees felled in the first third of the nineteenth century, and the windshaft was from a tree likely felled in the mid-nineteenth century. An offcut dated using ring-width dendrochronology proved to be part of the modern repair programme with a felling date of after AD 1974.

CONTRIBUTORS

Martin Bridge, Cathy Tyers, Neil J Loader, Danny McCarroll, Darren Davies, and Giles H F Young

ACKNOWLEDGEMENTS

Simon Hudson was present for the initial site work, and Martin Davies and Dave Pearce also attended and gave background information on the mill. Thanks to Trudi Hughes, Historic England Heritage at Risk Architect for alerting us to a renewed phase of repairs. Alex Bayliss, Historic England Scientific Dating Team, is thanked for her contributions to drafting this report. We are also grateful to Shahina Farid, Historic England Scientific Dating Team, for commissioning this study.

ARCHIVE LOCATION

Historic England Archive The Engine House Fire Fly Drive Swindon SN2 2EH

HISTORIC ENVIRONMENT RECORD LOCATION Cambridgeshire Historic Environment Record Cambridgeshire County Council Historic Environment Team Sackville House Sackville Way Cambourne Cambridge CB23 6HL

DATE OF INVESTIGATION 2012–22

CONTACT DETAILS Dr M C Bridge UCL Institute of Archaeology 31–34 Gordon Square London WC1H 0PY <u>martin.bridge@ucl.ac.uk</u>

Cathy Tyers Historic England Cannon Bridge House 25 Dowgate Hill London EC4R 2YA <u>cathy.tyers@historicengland.org.uk</u>

Neil J Loader, Danny McCarroll, Darren Davies, and Giles H F Young Department of Geography Swansea University SA2 8PP Wales <u>n.j.loader@swansea.ac.uk</u> <u>d.mccarroll@swansea.ac.uk</u> <u>d.davies@swansea.ac.uk</u> <u>g.h.f.young@swansea.ac.uk</u>

CONTENTS

1
1
1
2
2
4
4
5
5
7
1
7
5
8

INTRODUCTION

This report updates a previous programme of ring-width dendrochronology carried out on the site, which is reported in Bridge (2015). This post and open-trestle windmill is a Scheduled Ancient Monument (List Entry Number 1006820) and Grade II* Listed Post Mill (List Entry Number 1211279), situated on the east side of the settlements of Great and Little Gransden in the District of Huntingdon in Cambridgeshire (Fig 1). The list description suggests that this may be the oldest such mill in England with a documentary reference suggesting construction in *c* AD 1612. As has been pointed out elsewhere (Bridge 2006), however, the concept of age in windmills is problematic because of the degree of rebuilding and repair associated with such structures, especially the re-use of the large main posts which are generally exceptional timbers.

In the first study, 13 samples were taken from this mill, including one *ex situ* timber of uncertain origin lying on the upper floor. Six of the nine samples considered suitable for analysis were successfully dated, although these results have been slightly amended here by using a local sapwood estimate of 12–45 rings (Miles 1997), rather than the estimate of 9–41 rings used in the previous study. Three dated timbers from the buck appeared to be coeval and had a likely felling date range of AD 1803–36. The dated right sheer appeared to be a little older, with a likely felling date range of AD 1771–1804, whilst the windshaft is slightly later, with a likely felling date range of AD 1848–81. The final dated timber was the main post, which was clearly substantially earlier. Its outermost ring potentially marked the heartwood/sapwood boundary, giving a possible felling date range of AD 1631–64.

In late 2016, at the request of Trudi Hughes, Historic England Heritage at Risk Architect, previously inaccessible exposed timbers, which it was thought might be primary were assessed and further sampling was carried out. This report presents both the initial work and subsequent sampling and analysis.

RING-WIDTH DENDROCHRONOLOGY

Methodology

Those timbers judged to be potentially useful were cored using a 16mm auger attached to an electric drill. The cores were labelled, and stored for subsequent analysis.

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their treering sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004). Cross-matching was attempted by a process of qualified statistical comparison by computer, supported by visual checks. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find

demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-value in the range of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same-tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring (ie if it has only the spring vessels or earlywood formed, or the latewood or summer growth) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem* (*tpq*) or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 12–45 rings (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

Results and Interpretation

Details of the samples taken from the 18 oak (Quercus sp.) timbers assessed as the most promising for ring-width dendrochronology are given in Table 1. The locations of the samples are illustrated, where possible, in Figures 2 and 3. Sample 10 is from the right-hand side girt, not illustrated in these figures, but it is the equivalent timber to the left-hand side girt (ggm16) shown in Figure 2. Two samples, ggm15 and ggm17, were from *ex situ* timbers and so are not located on the figures. The exposed end of the left stone bearer (ggm18) is illustrated in Figure 4. Three timbers yielded cores with ring sequences too short to justify further analysis.

The measured ring-width sequences were compared. Those from the three cores from the crown-tree cross-matched (Table 2a; Fig 5), and were combined to form the 90-ring series, ggm04. The two cores from the right side girt cross-matched as shown in (Table 2b; Fig 6), and were combined to from the 53-ring series, ggm10. The two cores from the break handle also cross-matched (Table 2c; Fig 7), and were combined to from the 48-ring series, ggm17.

The ring-sequences from each timber were then compared and cross-matching was found between five of these (Table 2d), and confirmed by comparison of each individual ring-width sequence to the database of reference chronologies. The level of cross-matching was so good between three samples (ggm06, ggm11, and ggm13) that the timbers represented are thought to potentailly have been derived from the same parent tree, despite the variation in the dates of their heartwood/sapwood boundaries. These three ring-width series were therefore combined prior to being incorporated with the other two matching series into a single site chronology, GRANSDEN, which dates to the period AD 1706–1836. The dating evidence is shown in Table 3a.

The three dated timbers (ggm06, ggm11, and ggm13) from the frame of the buck, all thought to be potentially derived from the same parent tree, have a mean heartwood/sapwood boundary date of AD 1791. This results in a likely felling date range for these timbers of AD 1803–36.

The ring sequence of the right sheer (ggm02) dates to the period AD 1708–63 and includes four sapwood rings, making the likely felling date range for this timber AD 1771–1804. The right sheer may be a re-used timber, but it is difficult to draw any firm conclusions on the basis of a single dated timber. However, the slightly earlier felling date suggests there may have been an earlier superstructure than the current buck, the only dated parts of which are early nineteenth century.

The ring sequence from the windshaft (ggm09) dates to the period AD 1731–1836 with the outermost ring marking the heartwood/sapwood boundary. The likely felling date range of AD 1848–81 makes it younger than the other dated timbers. This is not surprising, as this element of the mill has to take a lot of strain and is often replaced. The dating of the windshaft therefore suggests another phase of repair within the extant structure.

The main post (ggm01) yielded a sequence of 124 years which was thought to potentially end at the heartwood/sapwood boundary. This boundary was evident on the timber itself, but not positively identified on the core. Series ggm01 was dated individually to AD 1496–1619 (Table 3b). If the outermost ring is taken as the heartwood/sapwood boundary, this gives a likely felling date range of AD 1631–64.

One further sample, ggm15, was an offcut with 80 rings of uncertain origin within the mill. This was securely dated by ring-width dendrochronology to the period AD 1883–1962 (Table 3c), giving a likely felling date of after AD 1974, and it was therefore assumed to be part of the current repair programme.

The crown tree, an important element of the mill which failed to date in the first investigation, was re-sampled and additional 83-year sequence retaining complete sapwood was obtained, along with a shorter sequence. The 90-year mean sequence for this timber, ggm04, failed to securely date using conventional ring-width dendrochronology, and a sample was submitted for oxygen isotope analysis (see below). Table 3d does, however, show the ring-width matches for the combined ring-width series ggm04 at the position corresponding to the date produced by isotopic analysis. This cross-matching is compatible with the isotopic analysis, but not on its own enough for independent dating by ring-width dendrochronology.

The new samples taken in 2016 included a second core from the right side girt (ggm10b) which had failed to date initially. The resulting 53-year combined sequence (ggm10) also failed to date. Similarly, ggm14, a horizontal brace between angled side braces on the left side of the buck, yielded a sequence of 93 rings, but this failed to give satisfactory matches against the database, and remains undated. Two other timbers, ggm16 and ggm18 (Table 1; Figs 2 and 4) also failed to date from the new sampling programme, joining ggm05 and ggm08 as undated timbers with measured ring-width sequences from the mill.

Two samples from the brake handle (ggm17a and ggm17b) yielded relatively short sequences (48 and 41 rings respectively; Table 2c; Fig 7), the longest of which was

submitted for oxygen isotope analysis (see below). The relatively short, combined ring-width sequence, ggm17, gave statistically significant matches at two potential positions ending in the sixteenth century, as well as at AD 1745, as indicated by the isotopic analysis (Table 3e) and thus was not dated securely by ring-width dendrochronology.

The ring-width data from the measured samples are given in Appendix 1.

OXYGEN ISOTOPE DENDROCHRONOLOGY

The two samples from Great Gransden Mill selected for oxygen isotope analysis were ggm04c, from the crown post, and ggm17a, a sample from the *ex situ* brake handle. Both samples were oak (Quercus sp.). Timber ggm04 comprised 90 measured ring-widths with complete sapwood and bark edge and timber ggm17 had 48 measured ring-widths stopping at a break in the core positioned near the heartwood/sapwood boundary with 11 sapwood rings not measured (Table 1).

Oxygen isotope ratios were obtained from a total of 76 and 46 rings from samples ggm04c and ggm17a respectively (Table 4; Appendix 2). For sample ggm04c stable isotope measurements covered the rings 10–85. Sample ggm17a had four additional latewood increments visible at the start of the core (pith end), which were not measured in the initial ring-width measurements as they were atypically wide. These rings were also excised and prepared for isotopic analysis. The resulting isotope series for sample ggm17a covered rings –3 to 42. Where rings exhibited no latewood, or where the sample was degraded or showed signs of possible contamination, isotopic analyses were not attempted.

Methodology

Oxygen isotope dendrochronology relies upon the same fundamental principles, limitations, and assumptions as conventional (ring-width-based) dendrochronology. However, rather than using ring-width measurements it uses the ratio of heavy to light oxygen isotopes (McCarroll and Loader 2004) in the latewood cellulose (δ 18O). The isotopes can have a higher signal to noise ratio than ring-width measurements and strong signals do not require the trees to be growing under any environmental stress (Young *et al* 2015).

The method relies on a regional master chronology (Loader *et al* 2019) constructed using dendrochronologically-dated oak timbers sourced from across a c 45,200km2 (20,000 mile2) region centred on Oxfordshire, in south-central England. The chronology was developed as part of a Leverhulme Trust funded project (RPG-2014-327) and currently covers a period from AD 1200–2000 with annual replication (sample depth) of 10 trees throughout the chronology period. A thin slice (4mm) is removed from the base of the sample cores selected for isotopic analysis to retain the original measured surface and ensure its preservation for future dendrochronology and archiving.

Several physiological studies of oak trees have shown that the earlywood is partially formed from carbohydrates fixed in previous years (Richardson *et al* 2013; McCarroll *et al* 2017). To avoid this chemical carry-over effect in oak, only the latewood of each tree-ring is prepared for chemical analysis and dating. Each latewood ring is carefully removed as thin slivers (approximately 40µm thick) using a scalpel and dissecting microscope.

Wood samples are converted to α -cellulose using an acidified sodium chlorite solution with removal of hemicelluloses by sodium hydroxide (Loader *et al* 1997). Samples are homogenised using an ultrasonic probe and vacuum-dried at -50° C

for 48 hours. 0.30-0.35mg of dry α -cellulose are weighed into individual silver foil capsules for pyrolysis to carbon monoxide (CO) at 1400°C (Woodley *et al* 2012). The resulting carbon monoxide is analysed using a Delta V isotope-ratio mass spectrometer. Data are expressed as per mille (‰) deviations relative to the Vienna Standard Mean Ocean Water (VSMOW) international standard. Analytical precision is typically 0.30‰ (σ n-1, n=10) (Loader *et al* 2015). The master chronology was prepared as two independent pools of five trees to ensure quality control and the resulting data combined to form the ten-tree master chronology. Individual samples for dating are prepared and analysed separately, using identical preparation protocols. The resulting stable isotopic data are presented as chronologies (time series).

Tree-ring oxygen isotope data have statistical properties that are quite different from ring-widths, requiring different pre-treatment. The Baillie-Pilcher filter that works well for ring width dating (Baillie and Pilcher 1973) is not appropriate for isotope data and would result in unrealistically high *t*-values (Loader *et al* 2019). The isotope data are filtered using a simple nine-year rectangular filter, with indices derived by subtraction. Degrees of freedom are corrected for autocorrelation and filtering resulting in *t*-values that conform to a Student's *t*-distribution and can be used to calculate one-tail probabilities of error. The probabilities are corrected for multiple testing by division by the number of possible matches against the master chronology (a 'Bonferroni' correction) (Dunn 1959; 1961). The ratio of probabilities for the first and second highest *t*-values provides an 'isolation factor'. Potential dates are only considered for acceptance when the corrected probability of error is less than one in a hundred and the probability for the best match is more than an order of magnitude less likely to be in error than the next best match. All *t*-values pertaining to isotope data in this report are Student's *t*-values.

Cross-matching between isotope samples is achieved using the same approach, with the number of possible matches determined by setting a minimum size of overlap. Student's *t*-values, corrected one-tail probabilities and the isolation factor are reported as well as the highest correlation coefficient, offset in ring number, and size of overlap.

In isotope dendrochronology it is not always necessary or possible to measure isotopically each tree-ring, in which case the last ring measured isotopically must be placed within the context of the entire sample. This may require addition of years identifiable in the sample, but not measured isotopically. Once a date for the last ring has been calculated, a felling date or sapwood estimate may be assigned using identical methods to those in ring-width dendrochronology (see above).

Results

The oxygen isotope series from ggm04c comprises isotopic measurements from 76 rings (ring 10 to ring 85 of the mean timber series, ggm04). The series from ggm17a comprises isotopic measurements from 46 rings (ring –3 to ring 42 of the mean timber series, ggm17).

Table 5 shows the cross-dating statistics for the individual isotopic series from each of the two sampled timbers from Great Gransden Mill. Individually, both timbers ggm04c and ggm17a produce dates that independently pass the thresholds for consideration as dated suggested by Loader *et al* (2019) and both cross-date securely against the isotopic reference chronology (Table 5; Figs 8 and 9). Sample ggm04c returns a date of AD 1639I for ring 85 which relates to a date of AD 1644I for the last ring-width measurement (ring 90). As complete sapwood is present a felling date of winter AD 1644/45I can be assigned to this timber. Sample ggm17a returns a date of AD 1739I for ring 42 which relates to a date of AD 1745I for the last measured ring-width (ring 48). As there are 11 rings not measured, an

estimated felling date range of AD 1757–1790I can be assigned using the same sapwood estimate as above of 12–45 rings (Miles 1997).

DISCUSSION

There appear to be four possible phases of construction represented within the eight dated historic samples (Tables 1, 3a–b, 3d–e, and 5; Fig 10).

The felling date for the main post (ggm01, ?AD1631–64) provided by ring-width dendrochronology is later than the date of c AD 1612 suggested in the list description, which was derived from a documentary source. The main post is an exceptionally large timber, and such timbers were probably relatively rare. They were therefore potentially a valuable commodity re-used several times, as seen elsewhere at Pitstone Mill (Miles *et al* 2004), Nutley Mill (Bridge 2006), and Drinkstone Mill (Bridge 2001a). These three examples are all older than the post at Great Gransden, and indeed they have older buck timbers, suggesting that in fact this mill is not the oldest of its type in the country. The date appears to be confirmed, and indeed be refined, by the felling date of the cross tree (ggm04, winter AD 1644/5I), derived by oxygen isotope dendrochronology, as it is likely that the two major timbers were put in place at the same time.

The buck timbers are from timbers felled in the first third of the nineteenth century, with the right sheer and brake handle probably derived from trees felled slightly earlier. The windshaft dates to the mid-nineteenth century. If sample ggm06 is indeed from the same tree as ggm11 and 13, it would have had fewer sapwood rings than the others, although sapwood numbers can vary within the same tree. An off-cut was found to be part of the modern repair timbers.

Most of the historic timbers appear to be relatively local in origin, as shown by the matches obtained and detailed in Tables 3a, 3b, and 3e. However, the ring-width cross-matching for the cross tree (Table 3d), dated by oxygen isotope dendrochronology, suggests that it may have come from an area to the west of the site. The recent sample, ggm15 (Table 3c) was bought from Suffolk.

REFERENCES

Arnold, A, and Howard, R, 2010 *Breakspear House, Breakspear Road North, Harefield, Hillingdon, Greater London: Tree-ring analysis of timbers*, English Heritage Research Department Report Series, **71/2010**

Arnold, A, and Howard, R, 2011 *The Dovecote, Breakspear House, Breakspear Road North, Harefield, Hillingdon, London*, English Heritage Research Department Report Series, **37/2011**

Arnold, A, and Howard, R, 2013 *Oakham Castle, Castle Lane, Oakham, Rutland: Tree-ring Analysis of* Timbers, English Heritage Research Department Report Series, **23/2013**

Arnold, A J, Howard, R E, and Litton, C D, 2003 *Tree-ring Analysis of Timbers from Clothall Bury Barn, Wallingford, nr Baldock, Hertfordshire*, Centre for Archaeology Report, **51/2003**

Arnold, A J, Howard, R E, and Litton, C D 2004 *Tree-ring Analysis of Timbers from Kibworth Harcourt Post Mill, Kibworth Harcourt, Leicestershire*, Centre for Archaeology Report, **76/2004**

Arnold, A J, Howard, R E, and Litton, C D, 2005a *Tree-ring Analysis of Timbers* from the High Roofs of the Cathedral of the Holy and Undivided Trinity, Ely, Cambridgeshire, Centre for Archaeology Report, **19/2005**

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G, 2005b *The Tree-ring Dating of a Number of Bellframes in Leicestershire*, Centre for Archaeology Report, **5/2005**

Arnold, A J, Howard, R E, and Tyers, C, 2008 *Tree-ring Analysis of Timbers, Apethorpe Hall, Apethorpe, Northamptonshire*, English Heritage Research Department Report Series, **87/2008**

Arnold, A J, Howard, R E, and Tyers, C, 2018 *Tattershall Castle, Sleaford Road, Tattershall, Lincolnshire: Tree-ring Analysis of Oak Timbers of the Moat Bridges 2,3 and 4*, Historic England Research Report Series, **52/2018**

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Bale, R, 2005 A 223-year (AD 1779–2001) modern oak tree ring chronology from Allt Lanlas, Llanerchaeron, Ceredigion, *Swansea Geographer*, **40**, 45–55

Barefoot, A C, 1978 in *Dendrochronology in Europe* (ed J M Fletcher), Brit Archaeol Rep, **51**, 157–61

Barsoum, N, Eaton, E L, Levanič, T, Pargade, J, Bonnart, X, and Morison, J I L, 2015 Climatic drivers of oak growth over the past one hundred years in mixed and monoculture stands in southern England and northern France, *European J Forest Research*, **134**, 33–51

Bridge, M C, 1983 The use of tree-ring widths as a means of dating timbers from historical sites, Unpubl. PhD thesis, CNAA

Bridge, M C, 1998 *Compilation of master chronologies from the South*, unpubl computer file *SENG98*, University College London Dendrochronology Laboratory

Bridge, M C, 2001a *Tree-ring Analysis of Timbers from the Post Mill, Drinkstone, Suffolk,* Centre for Archaeology Report, **60/2001**

Bridge, M C, 2001b Tree-ring dates, Vernacular Architect, 32, 70–4

Bridge, M C, 2003 *Compilation of master chronologies from East Anglia*, unpublished computer file *ANGLIA03*, University College London Dendrochronology Laboratory

Bridge, M C, 2006 Windmills: ages revealed by tree-ring dating, *Mill News*, **106**, 10–11

Bridge, M C, 2008 St Mary's Church, Cratfield, Suffolk: Tree-ring Analysis of Timbers from the Bellframe and Windlass, English Heritage Research Department Report Series, **30/2008**

Bridge, M C, 2015 Great Gransden Windmill, Mill Road, Great Gransden, Cambridgeshire: Tree-ring Dating of Oak Timbers, Historic England Research Report Series, **23/2015**

Bridge, M C, and Tyers, C, 2020 *12 Park Street, Towcester, Northamptonshire: Tree-ring Analysis of Oak Timbers*, Historic England Research Report Series, **232/2020**

Bridge, M C, and Tyers, C, 2022 *158 Watling Street East, Towcester, Northamptonshire: Tree-ring Analysis of Oak Timbers*, Historic England Research Report Series, **10/2022**

Bridge, M C, and Winchester, V, 2000 An evaluation of standard oak tree growth in Ruislip Woods, West London, *Bot J Linn Soc*, **134**, 61–71

Bridge, M C, Roberts, E, and Miles, D, 2011, Tree Ring Dating Lists, *Vernacular Architect*, **42**, 107

Briffa, K R, Wigley, T M L, Jones, P D, Pilcher, J R, and Hughes, M K, 1986 *The reconstruction of past circulation patterns over Europe using tree-ring data*, final report to the Commission of European Communities, contract no CL.111.UK(H)

Cooper, R J, Melvin, T M, Tyers, I, Wilson, R J S, Briffa, K R, 2012 A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium, *Climate Dynamics*, **40**, 1019–39

Coplen, T B, 1995 Discontinuance of SMOW and PDB, *Nature*, **375**, 285

Dunn, O J, 1959 Estimation of the medians for dependent variables, *Annals of Mathematical Statistics*, **30**, 192–7

Dunn, O J, 1961 Multiple comparisons among means, *Journal of the American Statistical Association*, **56**, 52–64

Groves, C, 1993 *Tree-ring Analysis of a Wood Assemblage from Tilbury Fort, Essex, 1988-89*, Ancient Monument Laboratory Report, **20/93**

Groves, C, Locatelli, C, and Howard, R, 2004 *Tree-ring Analysis of Timbers from Church Farm, Bringhurst, Leicestershire*, Centre for Archaeol Rep, **56/2004**

Haddon-Reece, D, Miles, D H, Munby, J T, and the late Fletcher, J M , 1993 Oxfordshire Mean Curve - a compilation of master chronologies from Oxfordshire, unpubl computer file OXON93, Oxford Dendrochronology Laboratory

Howard, R E, Laxton R R, and Litton, C D, 1998 *Tree-ring Analysis of Timbers from Chicksands Priory, Chicksands, Bedfordshire*, Ancient Monuments Laboratory Report, **30/98**

Laxton, R R, and Litton, C D, 1988 *An East Midlands Master Tree-Ring Chronology and its use for dating Vernacular Buildings*, Univ Nottingham Dept of Classical and Archaeol Studies Monograph Ser, **3**

Loader, N J, 1999, unpubl computer file *HGHTNMLL*, Cambridge Dendrochronology Laboratory

Loader, N J, Robertson, I, Barker, A C, Switsur, V R, and Waterhouse, J S, 1997 An improved technique for the batch processing of small wholewood samples to a-cellulose, *Chemical Geology*, **136**, 313–7

Loader, N J, Street-Perrott, F A, Daley, T J, Hughes, P D M, Kimak, A, Levanič, T, Mallon, G, Mauquoy, D, Robertson, I, Roland, T P, van Bellen, S, Ziehmer, M M, and Leuenberger, M, 2015 Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose, *Analytical Chemistry*, **87**, 376–80

Loader, N J, McCarroll, D, Miles, D, Young, G H F, Davies, D, and Bronk Ramsey, C, 2019 Tree-ring dating using oxygen isotopes: a master chronology for central England, *Journal of Quaternary Science*, **34**, 475–90 (DOI: 10.1002/jqs.3115)

McCarroll, D, and Loader, N J, 2004 Stable isotopes in tree rings, *Quaternary Science Reviews*, **23**, 771–801

McCarroll, D, Whitney, M, Young, G H F, Loader, N J, and Gagen, M H, 2017 A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak, *Tree Physiology*, **37**, 1021–7

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Miles, D W H, 2002 *The Tree-Ring Dating of 8 Market Place, Shepton Mallet, Somerset*, Centre for Archaeology Report, **4/2002**

Miles, D, 2003 Dating Buildings and Dendrochronology in Hampshire, in *Hampshire Houses 1250 - 1700: Their Dating and Development* (ed E Roberts), 220–6, Southampton (Hampshire County Council)

Miles, D H, 2005 *The Dating of the Nave Roof at Salisbury Cathedral, Wiltshire*, English Heritage Research Department Report Series, **58/2005**

Miles, D, 2007 *The Tree-ring Dating of the White Tower, HM Tower of London* (TOL99 and TOL100), London Borough of Tower Hamlets, English Heritage Research Department Report Series, **35/2007**

Miles, D W H, 2021 unpubl computer file *WOBURN1*, Oxford Dendrochronology Laboratory

Miles, D H, and Bridge, M C, 2011 Tree-ring dates, *Vernacular Architect*, **42**, 108–9

Miles, D H, and Bridge, M C, 2013 Tree Ring Dates, *Vernacular Architect*, **44**, 98–102

Miles, D H, and Haddon-Reece, D, 1994 List 56 - Tree-ring dates, *Vernacular* Architect, **25**, 28–36

Miles, D H, and Worthington, M J, 1999 Tree-ring dates, *Vernacular Architect*, **30**, 98–113

Miles, D H, Worthington, M J, and Bridge, M C, 2004 Tree-ring dates, *Vernacular Architect*, **35**, 95–113

Miles, D H, Worthington, M J, and Bridge, M C, 2009 Tree-ring dates, *Vernacular Architect*, **40**, 122–31

Miles, D H, Worthington, M J, and Bridge, M C, 2010 Tree-ring dates, *Vernacular Architect*, **41**, 102–5

Nayling, N, 2000 Tree-ring Analysis of Timbers from the Old Hat Shop, 100 Church Street, Tewkesbury, Gloucestershire, Ancient Monument Laboratory Report, **68/2000**

Pilcher, J R, and Baillie, M G L, 1980 Eight Modern Oak Chronologies from England and Scotland, *Tree-Ring Bull*, **40**, 45–58

Richardson, A D, Carbone, M S, Keenan, T F, Czimczik, C I, Hollinger, D Y, Murakami, P, Schaberg, P G, and Xu, X, 2013 Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees, *New Phytologist*, **197**, 850–61

Tyers, I, 2004 Dendro for Windows Program Guide 3rd edn, ARCUS Rep, 500b

Tyers, I, 1996 Tree-ring analysis of timbers from Longport Farmhouse, Kent, ARCUS Rep, **279**

Wilson, R, Miles, D, Loader, N J, Melvin, T, Cunningham, L, Cooper, R, and Briffa, K, 2012 A millennial long March-July precipitation reconstruction for southerncentral England, *Climate Dynamics*, **40**, 997–1017

Woodley, E J, Loader, N J, McCarroll, D, Young, G H F, Robertson, I, Heaton, T H E, Gagen, M H, and Warham, J O, 2012 High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose, *Rapid Communications in Mass Spectrometry*, **26**, 109–14

Young, G H F, Loader, N J, McCarroll, D, Bale, R J, Demmler, J C, Miles, D, Nayling, N T, Rinne, K T, Robertson, I, Watts, C, and Whitney, M, 2015 Oxygen stable isotope ratios from British oak tree rings provide a strong and consistent record of past changes in summer rainfall, *Climate Dynamics*, **45**, 3609–22

TABLES

Table 1: Details of the samples taken from Great Gransden Windmill and dates produced by ring-width and oxygen isotope dendrochronology

Sample	Location	No of	Date of	Sapwood	Mean ring	Mean	Felling date range
No		rings	sequence (AD)	1	width (mm)	sensitivity	(AD)
ggm01	Main post	124	1496-1619	?h/s	2.38	0.31	?1631-64
ggm02	Right sheer	56	1708-63	4	2.94	0.19	1771-1804
ggm03	Left sheer	<30	-	-	NM	-	-
ggm04a	Crown tree	90	-	29C	1.97	0.20	-
ggm04b	ditto	36	-	1	2.13	0.26	-
ggm04c	ditto	83	-	16	2.14	0.23	-
ggm04	Mean of 04a, 04b, and 04c	90	1555–1644 ₁	29C	2.14	0.19	winter AD 1644/5 ₁
ggm05	Front sheer spacer	53	-	8 (+1NM)	3.40	0.25	-
ggm06	Stud, right upper front	63	1740-1802	h/s	2.33	0.33	1803-36
ggm07	Stud, right front lower section, inner	38	-	-	1.57	0.24	-
ggm08	Stud, right front lower section, outer	<30	-	-	NM	-	-
ggm09	Windshaft	106	1731-1836	h/s	1.95	0.19	1848-81
ggm10a	Right side girt	44	-	h/s	2.23	0.24	-
ggm10b	ditto	52	-	h/s	3.14	0.21	-
ggm10	Mean of 10a and 10b	53	-	h/s	2.71	0.21	-
ggm11	Rear right post, upper floor	85	1706-90	h/s	1.70	0.32	1803-36
ggm12	<i>Ex situ</i> timber of unknown origin	<30	-	-	NM	-	-
ggm13	Rear left post	69	1716-84	2	2.04	0.32	1803-36
ggm14	Horizontal brace between angled side braces, left side of buck	93	-	?h/s	1.65	0.21	-
ggm15	<i>Ex situ</i> offcut	80	1883-1962	-	1.97	0.26	after 1974
ggm16	Left side girt (possible re-used timber)	48	-	-	4.65	0.20	-
ggm17a	Brake handle (<i>ex situ</i>)	48	-	h/s	1.74	0.27	-
ggm17b	ditto	41	-	h/s (+11NM)	1.97	0.28	-
ggm17	Mean of 17a and 17b	48	1698–1745 ₁	h/s (+11NM)	1.87	0.27	1757–90 _I
ggm18	Left stone bearer	61	-	5	2.74	0.22	-

Key: $h/s = heartwood/sapwood boundary; NM = not measured; {}^{1/4}C = complete sapwood, felled the following spring; C = complete sapwood; felled the following sapwood; felled the following sapwood; felled th$

					<i>t</i> -values
Sample			ggm04a	ggm04b	ggm04c
	Relative start	Relative end			
	year	year			
ggm04a	1	90	-	3.9	2.6
ggm04b	50	85			9.2
ggm04c	5	87			-

Table 2a: Cross-matching between the three cores from ggm04, the crown tree

Table 2b: Cross-matching between the two cores from ggm10, the right side girt

<i>t</i> -values					
Sample			ggm10a	ggm10b	
	Relative start year	Relative end year			
ggm10a	10	53	-	4.9	
ggm10b	1	52		-	

Table 2c: Cross-matching between the two cores from ggm17, the brake handle

	<i>t</i> -values				
Sample			ggm17a	ggm17b	
	Relative start year	Relative end year			
ggm17a	1	48	-	17.3	
ggm17b	8	48		-	

Table 2d:Cross-matching between dated elements from the site master chronology GRANSDEN. t-values in excess of 3.5 are significant

Sample	ggm06	ggm09	ggm11	ggm13
ggm02	1.9	3.1	6.0	3.9
ggm06		4.3	10.4	14.4
ggm09			4.6	3.6
ggm11				17.9

Table 3a: Dating evide	nce for the ring-width si	tite master chronology, GRANSDEN, AD 1706	-1836
------------------------	---------------------------	---	-------

Source region:	Chronology name:	Publication reference:	File name:	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Regional Referen	ice Chronologies		•	•	•	
England	South Central England	Wilson <i>et al</i> 2012	SCENG	663-2009	131	12.5
Hampshire	Hampshire Master Chronology	Miles 2003	HANTS02	443-1972	131	9.1
Southern England	Southern England Master	Bridge 1998	SENG98	944-1790	85	8.5
East Anglia	East Anglia Master Chronology	Bridge 2003	ANGLIA03	944-1789	84	7.7
Individual Site C	hronologies		•	•	•	
Bedfordshire	Chicksands Priory	Howard <i>et al</i> 1998	CHKSPQ02	1611–1814	109	10.3
Leicestershire	Church Farm, Bringhurst	Groves <i>et al</i> 2004	BRNGHST1	1664–1781	76	10.2
Buckinghamshire	The Hovel, Ludgershall	Miles and Worthington 1999	THEHOVEL	1671–1811	106	9.5
Oxfordshire	Oriel College Tennis Court	Miles and Haddon-Reece 1994	ORIEL1	1534-1776	71	9.0
Cambridgeshire	Houghton Mill	Loader 1999 unpubl	HGHTNMLL	1683-1764	59	8.8
Hampshire	H.M.S. Victory	Barefoot 1978	VICTORY	1640-1800	95	8.7
Cambridgeshire	Ely Cathedral	Arnold <i>et al</i> 2005a	ELYCSQ05	1592-1794	89	8.7
Essex	Tilbury Fort	Groves 1993	TILBURY	1678-1777	72	8.5
Oxfordshire	Kiln Farm House, Upper Basildon	Miles and Bridge 2011	KILNFMHS	1692–1798	93	8.3
Northamptonshire	158 Watling Street East, Towcester	Bridge and Tyers 2022	TOWSt6	1702-1805	100	8.3

Source region:	Chronology name:	Publication reference:	File name:	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Regional Refere	nce Chronologies				•	•
England	South Central England	Wilson <i>et al</i> 2012	SCENG	663-2009	124	6.4
Hampshire	Hampshire Master Chronology	Miles 2003	HANTS02	443-1972	124	5.8
East Anglia	East Anglia Master Chronology	Bridge 2003	ANGLIA03	944-1789	124	5.8
East Midlands	East Midlands Master	Laxton and Litton 1988	EASTMID	882-1981	124	5.2
Individual Site C	Chronologies		L	1	ł	
London	White Tower, Tower of London	Miles 2007	WHTOWR7	1463-1616	121	6.7
Bedfordshire	Woburn Abbey, primary phase	Miles 2021 unpubl	WOBURN1	1515-1625	105	6.2
Leicestershire	Church Farm, Bringhurst	Groves et al 2004	BRNGHST2	1520-1572	53	6.1
Northants	Apethorpe Hall, Apethorpe	Arnold <i>et al</i> 2008	APTASQ01	1292-1639	124	6.1
Suffolk	St Mary's Church bellframe, Cratfield	Bridge 2008	CRATFLD1	1503–1639	117	6.0
Leicestershire	St Nicholas, Bringhurst	Arnold <i>et al</i> 2005b	LBFFSQ01	1502-1687	118	5.9
Rutland	Oakham Castle	Arnold and Howard 2013	OKMCSQ02	1383-1620	124	5.7
Buckinghamshire	34-35 Crown Court, West Wycombe	Miles and Bridge 2013	WWB	1550-1647	70	5.6
Oxfordshire	Wadham College	Miles et al 2010	WADHAM	1426-1610	115	5.6
Hampshire	Blaegrove Cottage, Up Nately	Bridge <i>et al</i> 2011	BLAEGROV	1347-1610	115	5.6

Table 3b: Dating evidence for ring-width series, ggm01, AD 1496–1619

Table 3c: Dating evidence for the ring-width series, ggm15, AD 1883–1962

Source region:	Chronology name:	Publication reference:	File name:	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Regional Referen	nce Chronologies			·		·
S Central England		Wilson <i>et al</i> 2012	SCENG	663-2009	80	7.3
Oxfordshire	Oxfordshire Master Chronology	Haddon-Reece <i>et al</i> 1993	OXON93	632–1987	80	5.1
Individual Site C	hronologies			·		·
Cambridgeshire	Buff Wood	Rackham pers comm	BUFFWOOD	1886-1985	77	6.8
Cambridgeshire	Hayley Wood	Bridge 1983	HAYLEY	1777-1981	80	6.8
Cornwall	SWPeninsula4	Barsoum <i>et al</i> 2015	SWPEN4	1780-2010	80	6.3
Norfolk	Hethersett	Cooper et al 2012	HETHRSTT	1828-2008	80	6.2
Greater London	Old Park Wood, Hillingdon	Bridge and Winchester 2000	OLDPARK	1786–1994	80	6.1
Lincolnshire	Tattershall Castle	Arnold <i>et al</i> 2018	TATCSQ01	1759–1981	80	6.1
Suffolk	Sotterley Park	Briffa <i>et al</i> 1986	SOTTERLY	1586-1981	80	5.9
Oxfordshire	Oxford Living Trees	Pilcher and Baillie 1980	OXFORD	1787–1978	80	5.7
Ceredigion	Allt Lanlas, Llanerchaeron	Bale 2005	LANLAS	1779-2001	80	5.5
London	Epping Forest	Wilson pers comm	EPPING	1812-2011	80	5.1

15

Table 3d: Tentative dating evidence for the ring-width series, ggm04, AD 1555–1644

Source region:	Chronology name:	Publication reference:	File name:	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Individual Site	Chronologies		•			
Gloucestershire	100 Church St, Tewkesbury	Nayling 2000	TEWKES2	1484–1664	90	5.5
London	Breakspear House, Harefield	Arnold and Howard 2010	HFDBSQ01	1574–1694	71	5.2
Hampshire	Hensting Farm Barn	Miles <i>et al</i> 2009	HENSTING	1514–1651	90	5.2
Somerset	8 Market Place, Shepton Mallet	Miles 2002	SHPTNMLT	1518-1677	90	4.6
Wiltshire	Salisbury Cathedral	Miles 2005	SARUM12	1556-1703	89	4.6

Source region:	Chronology name:	Publication reference:	File name:	Span of chronology (AD)	Overlap (years)	<i>t</i> -value
Individual Site Cl	nronologies					
Northants	Apethorpe Hall, Apethorpe	Arnold <i>et al</i> 2008	APTASQ02	1574-1749	43	5.6
Kent	Longport Farmhouse	Tyers 1996	LPH2T7	1617–1760	48	5.1
Hertfordshire	Clothall Bury Farmhouse, Wallingford	Arnold <i>et al</i> 2003	CLBBSQ01	1636-1753	48	4.8
Leicestershire	Kibworth Harcourt mill	Arnold <i>et al</i> 2004	KIBASQ01	1582-1773	48	4.5
Essex	St Mary's Church, Saffron Walden	Bridge 2001b	SAFFRON2	1701–1789	45	4.3
London	Dovecote, Breakspear House	Arnold and Howard 2011	HFDCSQ01	1695-1769	48	4.3
Northamptonshire	12 Park Street, Towcester	Bridge and Tyers 2020	PARK12t7	1635-1747	48	4.2

Table 3e: Tentative dating evidence for the ring-width series, ggm17, AD 1698–1745

Table 4: Sample description: timber type and position, material analysed, number of complete tree rings (N), number (N_i) and range of rings for which $\delta^{18}O$ measurements were undertaken, and laboratory code. The presence of a zero/negative ring number indicates rings identified and measured isotopically but not included in the ring-width analyses

Sample	Timber and Position	Species	N	Ni	δ^{18} O (Measured rings)	Code
ggm04c	Crown post (29C)	Latewood α-cellulose <i>Quercus</i> spp	90	76	10-85	SWAN-72a
ggm17a	Brake handle (<i>ex situ</i>) h/s (+11NM)	Latewood α-cellulose <i>Quercus</i> spp	52	46	-3-42	SWAN-72b

Key: h/s=heartwood/sapwood boundary; (3) = number of sapwood rings preserved; C = sapwood complete (bark edge); NM rings not measured.

Table 5: Stable oxygen isotope dating of the composite and individual samples from Great Gransden Mill Hall against the southcentral England master chronology (Loader et al 2019) over the period AD 1200–AD 2000. Number of whole rings present in core sample (N), number of rings on which δ¹⁸O measurements were undertaken (N_i), Pearson's correlation coefficient (r), degrees of freedom (adjusted for autocorrelation and multiple sampling), Student's t-value, probability (1/p), isolation factor (IF), and date.

Sample	Description	Ν	Ni	R	df	Т	1/p	IF	Date
ggm04c	Crown post	90	76	0.737	65	8.79	>1Million	>1000	1639
ggm17a	Brake Handle (<i>ex</i> -situ)	52	46	0.787	38	7.86	>1Million	>1000	1739

16

FIGURES

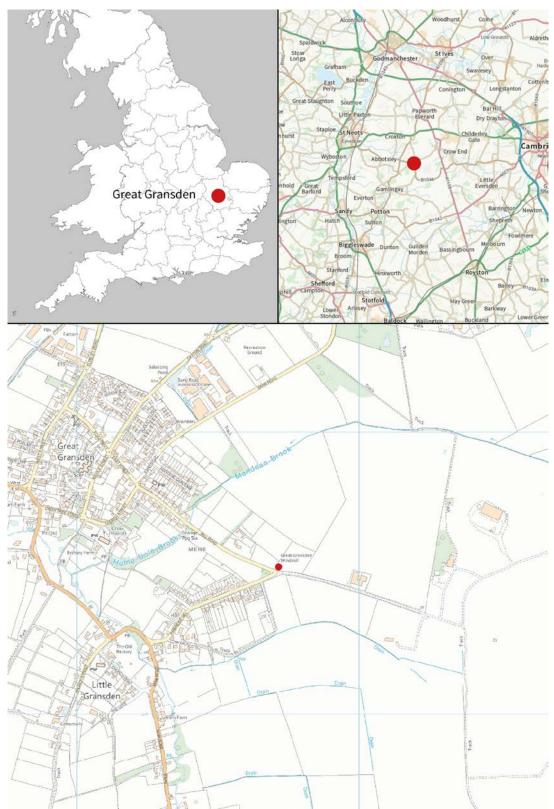
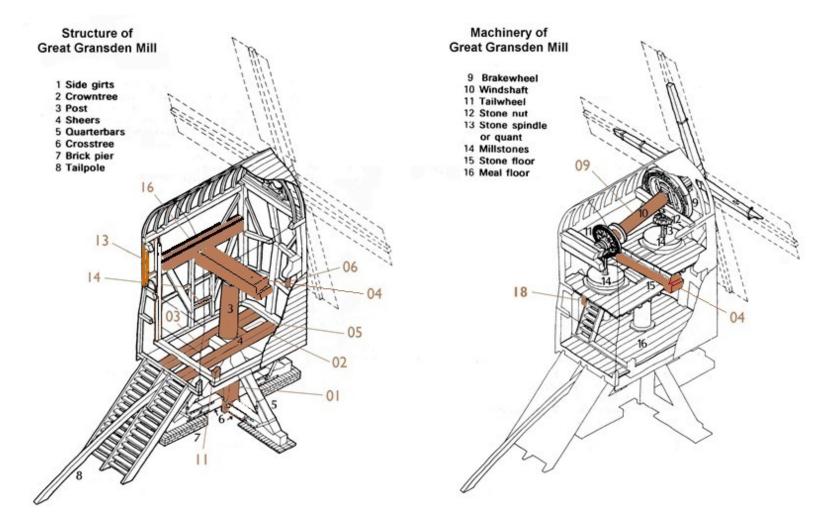
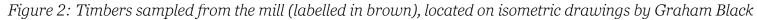
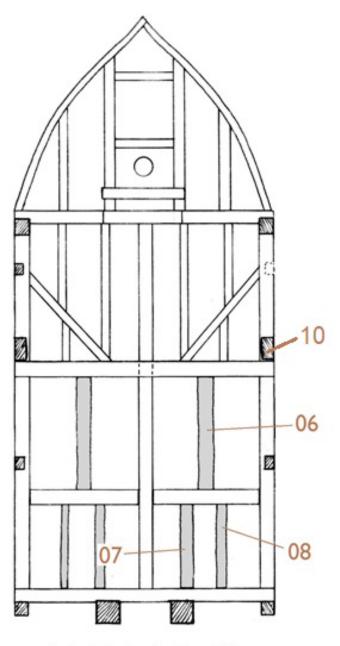





Figure 1: Maps to show the location of Great Gransden in Cambridgeshire, marked in red. © Crown Copyright and database right 2024. All rights reserved. Ordnance Survey Licence number 100024900

Front wall elevation, viewed from inside

Figure 3: Timbers ggm06-08, and ggm10 (labelled in brown) located on a drawing of the front elevation by Luke Bonwick

Figure 4: Exposed end of the left stone bearer (ggm18), sampled further along inside the buck (photograph by Martin Bridge)

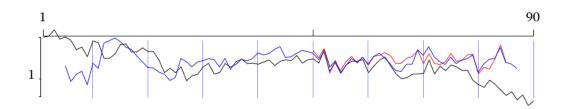


Figure 5: Plots of the three samples taken from ggm04 (04a – black, 04b – red, 04c – blue) showing their similarity in growth and relative positions of overlap (see Table 2a). The y-axis is ring width in mm on a logarithmic scale, the x-axis is relative years

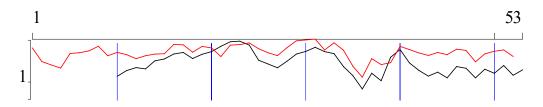


Figure 6: Plots of the two samples taken from ggm10 (10a – black, 10b – red) showing their similarity in growth and relative positions of overlap (see Table 2b). The y-axis is ring width in mm on a logarithmic scale, the x-axis is relative years

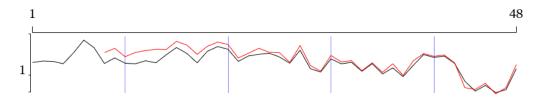


Figure 7: Plots of the two samples taken from ggm17 (17a – black, 17b – red) showing their similarity in growth and relative positions of overlap (see Table 2c). The y-axis is ring width in mm on a logarithmic scale, the x-axis is relative year

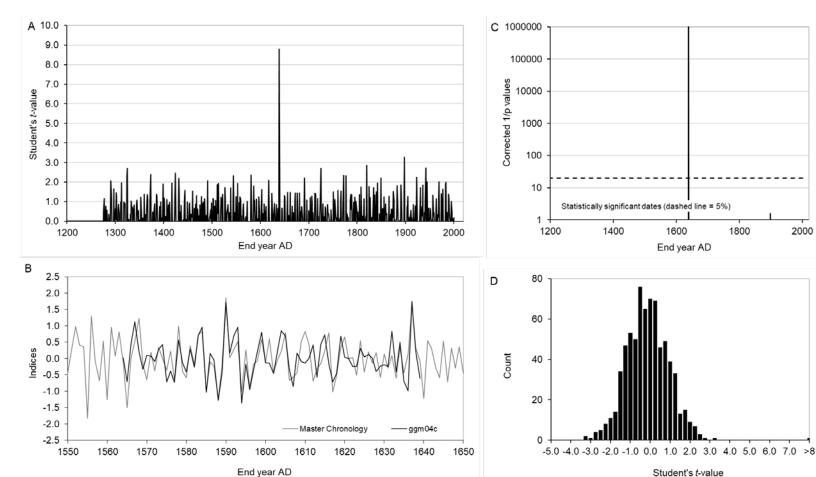


Figure 8: Dating results for the 76-year isotope chronology (ggm04c A: Student's t-values for all possible end dates with full overlap against the master chronology. B: Time series of the site isotopic mean plotted against the master chronology. C: End dates with corrected probabilities (1/p) of more than one. Those below the dashed line (1/p = 20) are not statistically significant. D: Distribution of Student's t-values for all possible matches

22

49-2022

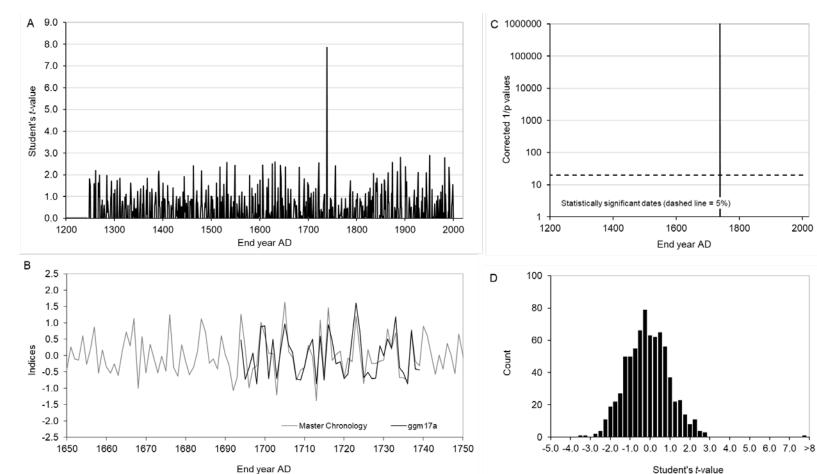


Figure 9: Dating results for the 46-year isotope chronology (ggm17a A: Student's t-values for all possible end dates with full overlap against the master chronology. B: Time series of the site isotopic mean plotted against the master chronology. C: End dates with corrected probabilities (1/p) of more than one. Those below the dashed line (1/p = 20) are not statistically significant. D: Distribution of Student's t-values for all possible matches

23

49-2022

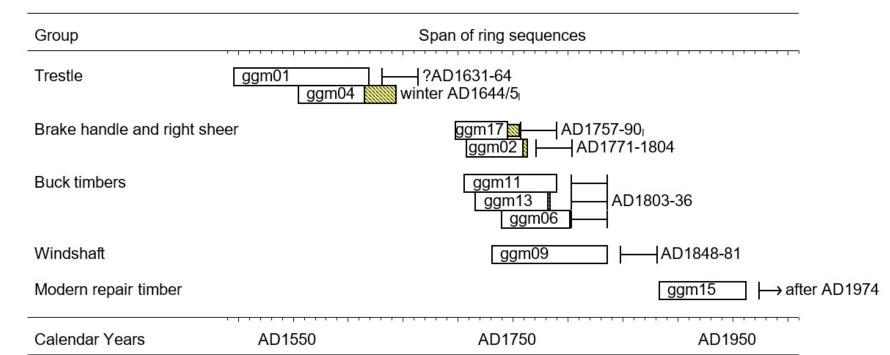


Figure 10: Bar diagram showing the relative positions of overlap of the dated timbers and their likely felling date ranges. White bars represent heartwood rings and yellow hatched sections represent sapwood rings. Narrow sections of bar represent additional unmeasured rings, and a date followed by subscript 1 represents an oxygen isotope date.

24

APPENDIX 1

Ring-width values (0.01mm) for the sequences measured

C C)				-		1		
ggm0 324 337 124 126 80 247 64 140 232 423 621 582 338)1 224 340 107 114 84 192 130 124 337 352 564 370 289	198 99 150 158 128 426 150 158 243 431 521 467 212	365 62 127 171 199 573 200 221 273 276 499 210 249	305 54 171 143 238 123 254 334 377 176 386 148	366 75 157 274 163 110 97 286 154 249 195 158	310 114 130 70 110 75 181 157 241 171 271 209	498 119 150 51 149 108 92 220 217 355 308 479	484 147 125 59 223 130 129 256 206 496 326 460	462 102 92 70 297 137 149 254 266 644 223 365
ggm0 305 257 304 446 264 253)2 368 269 263 429 181 266	180 396 268 289 170 251	248 448 202 249 280 268	319 426 264 193 332 194	344 323 260 162 212 335	223 453 276 170 253	238 515 369 280 297	264 462 309 322 272	288 430 286 278 268
ggm0 478 388 279 180 190 182 163 204 73)4a 497 218 203 121 204 303 202 121 96	633 217 127 127 166 157 228 162 82	446 254 150 179 194 199 166 137 66	482 366 127 156 205 124 121 169 54	426 372 158 174 199 171 101 158 62	301 275 94 212 241 196 105 138 46	330 276 113 178 181 195 120 138 55	231 322 119 182 206 207 121 94 37	416 281 158 174 212 127 123 81 44
ggm(293 168 179 121)4b 222 233 257 155	311 243 181 146	126 269 171 214	188 242 192 359	138 177 258 184	194 182 195	234 218 200	182 233 249	226 290 251
ggm0 165 409 107 144 226 127 138 227 188	94c 91 332 218 194 232 168 133 180 177	120 306 192 210 264 217 175 205 150	134 238 159 199 295 188 175 215	81 192 191 217 281 227 302 249	182 154 200 268 265 175 245 129	150 152 215 249 208 235 340 177	387 130 209 262 279 264 232 211	427 120 158 306 135 224 192 217	471 95 219 340 186 178 174 327
ggm(276 484 550 220 196 269)5 462 499 513 189 223 184	681 443 315 285 201 169	661 272 227 322 230	547 402 323 177 153	651 534 304 130 191	450 686 253 223 249	441 400 260 218 161	697 248 279 303 219	587 459 225 208 189

ggm0 80 176 242 326 133 240 122	06 70 186 284 201 210 247 178	108 342 169 165 357 166 203	144 263 299 260 237 178	132 246 211 331 332 98	270 208 165 322 151 213	381 283 251 354 123 238	314 155 498 379 186 221	144 105 501 267 231 225	98 323 388 188 382 188
ggm0 232 115 114 184)7 187 147 206 165	151 183 201 169	223 122 189 94	233 100 225 95	289 101 140 110	200 115 99 99	134 115 131 124	247 84 157	197 70 221
ggm0 120 204 223 245 220 156 151 127 132 161 152	99 88 213 209 202 152 216 250 108 167 151 141	86 240 172 393 209 194 156 136 178 181 151	230 210 324 310 243 220 169 162 163 136 159	336 348 242 214 260 131 212 192 158 129 133	286 308 276 268 245 121 172 165 153 138 153	253 327 193 274 295 130 211 193 166 119	384 175 267 292 202 140 144 142 139 139	289 137 210 232 194 184 136 121 165 181	187 172 241 213 158 130 133 135 159
ggm1 124 314 316 340 139	0a 154 383 369 205 186	172 455 314 155 129	164 465 291 125 158	222 402 179 145	238 227 127 117	287 197 77 179	304 171 139 168	242 218 105 117	284 286 254 162
ggm1 360 280 261 502 339 335	0b 216 241 401 334 299 262	190 269 409 438 272	169 286 436 331 304	293 290 350 181 280	301 411 301 120 344	323 406 270 241 329	384 307 363 193 214	269 382 471 207 289	305 361 487 383 318
ggm1 220 247 182 232 323 152 124 149 42	1 234 215 131 172 295 113 241 170 42	277 126 320 299 133 81 314 148 65	249 88 262 215 91 150 213 76 113	203 130 275 97 112 150 163 65 99	222 219 220 47 200 189 92 109	346 210 205 100 216 110 70 130	516 122 145 85 150 146 152 129	181 151 110 108 128 110 156 117	257 213 270 226 156 104 169 70
ggm1 242 154 281 315 168 127 278		186 282 302 141 85 428 198	140 295 299 97 267 335 109	182 253 116 135 231 277 85	288 241 80 239 203 146 130	333 236 105 310 143 107 245	143 176 113 210 181 196 136	184 129 136 187 116 292 171	218 264 245 131 115 276

ggm1 387 274 217 163 121 163 127 104 205 78	14 339 263 296 124 114 126 123 96 135 135	324 185 212 99 140 136 184 89 118 76	326 246 175 99 133 153 115 124 131	285 292 242 80 211 131 127 122 119	221 174 232 80 146 119 104 148 252	326 159 226 144 75 87 94 171 176	308 151 224 130 67 54 88 145 117	309 156 229 140 110 46 86 148 115	394 206 217 174 105 120 73 174 94
ggm1 352 207 229 304 114 140 155 198	15 260 237 203 207 145 134 128 134	237 185 171 134 224 185 162 201	293 138 221 130 161 216 230 163	189 191 177 265 165 222 196 122	188 201 247 184 150 130 146 192	245 250 178 208 92 259 151 147	330 285 359 204 133 142 201 198	258 227 231 116 210 199 173 140	317 180 254 118 220 231 196 161
ggm1 525 721 306 437 361 ggm1	396 681 474 443 359	499 802 475 392 308	684 725 402 436 354	571 391 368 432 278	323 490 406 420 316	547 571 645 357 337	418 630 546 496 262	496 564 429 391	432 493 447 479
161 153 168 153 206	170 172 207 162 156	168 159 220 115 79	154 216 230 154 54	233 285 199 104 67	378 228 157 131 51	283 159 257 94 57	155 247 127 145 127	192 296 112 218	157 267 185 195
ggm1 234 298 143 172 149	7b 275 349 116 226	200 318 210 203	235 191 165 214	253 229 172 159	265 276 118 62	264 237 159 58	358 233 111 73	311 162 153 49	219 306 99 62
ggm1 235 197 249 283 194 259 367	.8 287 266 226 397 268 324	239 218 165 330 338 284	283 328 283 280 268 283	169 209 472 252 211 272	126 222 410 250 203 258	206 288 399 199 268 285	231 248 318 209 371 169	422 254 322 218 481 212	258 253 296 247 504 198

APPENDIX 2

ggm04c

Oxygen isotope ratios (δ^{18} O) for the measured tree ring series. Data are reported as per mille (‰) deviations relative to the VSMOW standard (Coplen 1995).

Ring	$\delta^{18}O$	Ring	$\delta^{18}O$	Ring	$\delta^{18}\!O$
1		31	29.20	61	30.57
2		32	30.61	62	29.59
3		33	30.48	63	28.92
4		34	29.27	64	29.16
5		35	30.14	65	30.18
6		36	32.29	66	29.42
7		37	30.69	67	29.34
8		38	31.11	68	29.14
9		39	31.42	69	29.13
10	30.43	40	29.13	70	29.54
11	29.74	41	30.18	71	29.22
12	30.96	42	29.35	72	29.27
13	31.71	43	29.88	73	29.14
14	30.80	44	30.31	74	28.83
15	30.25	45	31.07	75	28.95
16	30.76	46	30.26	76	29.09
17	30.54	47	30.45	77	29.00
18	30.13	48	30.14	78	30.03
19	30.33	49	30.72	79	29.09
20	30.49	50	31.30	80	30.12
21	29.24	51	31.11	81	28.95
22	29.48	52	30.02	82	28.77
23	29.16	53	29.49	83	31.50
24	30.41	54	30.48	84	30.07
25	29.77	55	30.01	85	29.24
26	29.70	56	29.87	86	
27	30.36	57	30.07	87	
28	29.97	58	30.49	88	
29	30.95	59	29.32	89	
30	31.14	60	30.25	90	

ggm	1	7	a
88***	-	'	u

Rin	lg δ ¹⁸ 0) Ring	g δ ¹⁸ Ο	Ring	$\delta^{18}O$
-3	29.0)6			
-2	27.9	93			
-1	28.3	39			
0	28.7	79			
1	27.9	94 21	28.68	41	28.02
2	29.6	64 22	28.90	42	28.02
3	29.8	80 23	28.57	′ 43	
4	28.3	32 24	28.54	44	
5	29.5	54 25	29.61	45	
6	28.4	42 26	30.58	46	
7	29.3	10 27	29.62	47	
8	29.6	67 28	28.26	48	
9	29.0	00 29	28.46	•	
10	28.6	66 30	28.23	5	
11	27.9	90 31	28.06		
12	27.7	71 32	29.10		
13	28.0)7 33	28.81		
14	28.5	50 34	29.29)	
15	28.9	92 35	28.95	i	
16	27.7	70 36	30.05	i	
17	29.2	26 37	28.37	,	
18	28.0	01 38	28.13	5	
19	29.7	72 39	27.73		
20	29.2	18 40	29.34	÷	

Historic England's Research Reports

We are the public body that helps people care for, enjoy and celebrate England's historic environment.

We carry out and fund applied research to support the protection and management of the historic environment. Our research programme is wide-ranging and both national and local in scope, with projects that highlight new discoveries and provide greater understanding, appreciation and enjoyment of our historic places.

More information on our research strategy and agenda is available at HistoricEngland.org.uk/research/agenda.

The Research Report Series replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

All reports are available at HistoricEngland.org.uk/research/results/reports. There are over 7,000 reports going back over 50 years. You can find out more about the scope of the Series here: HistoricEngland.org.uk/research/results/about-the-research-reports-database.

Keep in touch with our research through our digital magazine *Historic England Research* HistoricEngland.org.uk/whats-new/research.